
StrongForth.f 3.1 Glossary: assembler 1

StrongForth.f 3.1 Glossary: forth

! (double address -> 1st --)

Store double at address -> 1st.

! (float address -> 1st --)

Store float at address -> 1st.

! (float dfaddress -> 1st --)

Store float as a double-precision floating-point number at dfaddress -> 1st.

! (float sfaddress -> 1st --)

Store float as a single-precision floating-point number at sfaddress -> 1st.

! (single address -> 1st --)

Store single at address -> 1st.

! (single caddress -> 1st --)

Store single at caddress -> 1st. Only the low-order bits corresponding to character size
are transferred.

" ("ccc<delimiter>" -- caddress -> character unsigned)

Parse ccc delimited by a quote (").

caddress -> character is the address of the first parsed character within the input buffer
and unsigned is the length of the parsed string. If the parse area was empty, unsigned is zero.

" ("ccc<delimiter>" --) compile-only

Compilation: Parse ccc delimited by a quote ("). Allot as many characters in the data space as are
required for storing ccc. Align the data space. Copy the character string ccc to the allotted
memory area. Append the runtime semantics given below to the current definition.

Runtime: Place the copied character string as caddress -> character unsigned on the
stack.

", (caddress -> character unsigned --)

Reserve data space for a string with unsigned characters and copy the string caddress ->
character unsigned into it. If the data space is character aligned when ", begins execution,
it will remain character aligned when ", finishes execution. Ambiguous conditions exists if the

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 2

first unused address of the data space is not character aligned prior to execution of ",, or if the data
space overflows.

(number-double -- 1st)

Divide number-double by the current number-conversion radix base giving the quotient 1st
and the remainder n (n is the least-significant digit of number-double). Convert n to external
form and add the resulting character to the beginning of the pictured numeric output string. An
exception is thrown if the transient area used for storing the pictured numeric output overflows.

#> (number-double -- caddress -> character unsigned)

Drop number-double. Make the pictured numeric output string available as caddress ->
character unsigned. A program may replace characters within the string.

#blocks (-- unsigned)

unsigned is the total number of blocks in the block file.

#friends (class-attributes -- caddress -> unsigned)

caddress -> unsigned is the address of an unsigned character-size value indicating the
length in cells of the friend class table of the class associated with class-attributes.

#friends is a member of the class-attributes class.

#hold (-- caddress -> unsigned)

caddress -> unsigned is the address of the offset with respect to line where the next
character of a string to be composed starts.

#locals (-- caddress -> unsigned)

caddress -> unsigned is the address of an unsigned character-size value indicating the
number of cells reserved for locals in the current definition.

#s (number-double -- 1st)

Convert one digit of number-double according to the rule for #. Continue conversion until the
quotient is zero. 1st is zero.

#vtable (data-type-attributes -- caddress -> unsigned)

caddress -> unsigned is the address of an unsigned character-size value indicating the
length in cells of the virtual method table of the data type associated with data-type-
attributes. If the data type has no virtual method table, this value is always zero.

#vtable is a member of the data-type-attributes class.

' ("<spaces>name" -- definition)

block.sf

escape.sf

StrongForth.f 3.1 Glossary: assembler 3

Skip leading space delimiters. Parse name delimited by a space. Search the context vocabularies
for name and return its latest occurrence as definition. An exception is thrown if name is not
found.

'friends (class-attributes -- address -> address ->
class-attributes)

address -> address -> class-attributes is the address of a pointer to the friend
class table of the class associated with class-attributes.

'friends is a member of the class-attributes class.

'last (class-attributes -- address -> definition)

address -> definition is the address of the most recent protected definition of the class
associated with class-attributes.

'last is a member of the class-attributes class.

'length (structure-attributes -- address -> object-size)

address -> object-size is the address of a cell containing the size in bytes of the structure
associated with structure-attributes.

'length is a member of the structure-attributes class.

'object-size (vtable -- address -> object-size)

address -> object-size is the address of the first entry within the virtual method table
vtable. This entry contains the size in bits of the associated object.

'parent (data-type-attributes -- address -> data-type-attributes
)

address -> data-type-attributes is the address of a cell containing the data-type-
attributes of the parent of the data type associated with data-type-attributes.

'parent is a member of the data-type-attributes class.

'size (data-type-attributes -- caddress -> unsigned)

caddress -> unsigned is the address of a character-size unsigned value indicating the size
in address units of the data type associated with data-type-attributes.

'size is a member of the data-type-attributes class.

'virtual (unsigned vtable -- address -> token)

address -> token is the address of the entry with index unsigned within the virtual
method table vtable.

'vocabulary (class-attributes -- address -> vocabulary)

struct.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 4

address -> vocabulary is the address of a pointer to the private vocabulary of the class
associated with class-attributes.

'vocabulary is a member of the class-attributes class.

'vtable (data-type-attributes -- address -> vtable)

address -> vtable is the address of a pointer to the virtual method table of the data type
associated with data-type-attributes.

'vtable is a member of the data-type-attributes class.

((-- stack-diagram) immediate

Save the value of state. Create an empty stack diagram stack-diagram. Enter interpretation
state.

(starts a stack diagram. Note that the semantics of (is not the same as in Forth-2012.

(+loop) (c:sys --)

Append the runtime semantics given below to the current definition. Resolve the destination of all
unresolved occurrences of leave between the location given by c:sys and the next location for
a transfer of control.

Runtime: (integer --)

An ambiguous condition exists if the loop control parameters are unavailable. Add integer to
the loop index. If the loop index did not cross the boundary between the loop limit minus one and
the loop limit, continue execution at the beginning of the loop. Otherwise, discard the current loop
control parameters and continue execution immediately following the loop.

(+loop) is an internal definition compiled by +loop.

(--)(stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type (--). This
data type is the qualified token of a definition with the stack diagram (--).

(--string)(stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type (--
string). This data type is the qualified token of a definition with the stack diagram (--
caddress -> character unsigned).

(-increment+index) (integer address --)

Consume the increment integer and the limit address, preparing for the compilation of
+loop.

(-increment+index) is an internal definition.

(-increment+index) (integer address -> double --)

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 5

Multiply integer by the size in address units of a double cell. Consume the increment integer
and the limit address -> double, preparing for the compilation of +loop.

(-increment+index) is an internal definition.

(-increment+index) (integer address -> float --)

Multiply integer by the size in address units of a floating-point number. Consume the increment
integer and the limit address -> float, preparing for the compilation of +loop.

(-increment+index) is an internal definition.

(-increment+index) (integer address -> single --)

Multiply integer by the size in address units of a single cell. Consume the increment integer and
the limit address -> single, preparing for the compilation of +loop.

(-increment+index) is an internal definition.

(-increment+index) (integer caddress --)

Multiply integer by the size in address units of a character. Consume the increment integer and
the limit caddress, preparing for the compilation of +loop.

(-increment+index) is an internal definition.

(-increment+index) (integer dfaddress --)

Multiply integer by the size in address units of a double-precision floating-point number. Consume
the increment integer and the limit dfaddress, preparing for the compilation of +loop.

(-increment+index) is an internal definition.

(-increment+index) (integer integer --)

Consume the increment integer and the limit integer, preparing for the compilation of
+loop.

(-increment+index) is an internal definition.

(-increment+index) (integer sfaddress --)

Multiply integer by the size in address units of a single-precision floating-point number. Consume
the increment integer and the limit sfaddress, preparing for the compilation of +loop.

(-increment+index) is an internal definition.

(-index) (address --)

Consume the limit address, preparing for the compilation of loop.

(-index) is an internal definition.

(-index) (address -> double --)

StrongForth.f 3.1 Glossary: assembler 6

Consume the limit address -> double, preparing for the compilation of loop.

(-index) is an internal definition.

(-index) (address -> float --)

Consume the limit address -> float, preparing for the compilation of loop.

(-index) is an internal definition.

(-index) (address -> single --)

Consume the limit address -> single, preparing for the compilation of loop.

(-index) is an internal definition.

(-index) (caddress --)

Consume the limit caddress, preparing for the compilation of loop.

(-index) is an internal definition.

(-index) (dfaddress --)

Consume the limit dfaddress, preparing for the compilation of loop.

(-index) is an internal definition.

(-index) (integer --)

Consume the limit integer, preparing for the compilation of loop.

(-index) is an internal definition.

(-index) (sfaddress --)

Consume the limit sfaddress, preparing for the compilation of loop.

(-index) is an internal definition.

(-limit+index) (address 1st --)

Consume the limit address and the index 1st, preparing for the compilation of do.

(-index) is an internal definition.

(-limit+index) (integer 1st --)

Consume the limit integer and the index 1st, preparing for the compilation of do.

(-index) is an internal definition.

(-separator) (single 1st -- 1st)

Consume the separator 1st, preparing for the compilation of of.

StrongForth.f 3.1 Glossary: assembler 7

(-separator) is an internal definition.

(-single) (single --)

Consume single, preparing for the compilation of a new local.

(-single) is an internal definition.

(;code) (c:sys colon-definition -- colon-definition)

Append the runtime semantics below to the current definition.

Runtime: Replace the execution semantics of the most recent definition with the execution
semantics given below. Return control to the calling definition. An ambiguous condition exists if
the most recent definition was not defined with create or a user-defined word that calls
create.

Execution: Perform the machine code sequence that was generated following ;code.

(;code) is an internal definition used by ;code.

(?do) (-- c:sys)

Put c:sys onto the stack. Append the runtime semantics given below to the current definition.
The semantics are incomplete until resolved by a consumer of c:sys such as (loop) and
(+loop).

Runtime: (integer 1st --) or (address 1st --)

If the first parameter is equal to the second parameter, continue execution at the location given by
the consumer of c:sys. Otherwise set up loop control parameters with the first parameter as the
index and the second parameter as the limit and continue executing immediately following (?do).

(?do) is an internal definition used by ?do.

(?dup) (single -- 1st)

Duplicate single if it is non-zero.

(?dup) is an internal definition used by ?if, ?while and ?until.

(2r>) (-- double)

Transfer double from the return stack.

(2r>) is an internal definition used by r>.

(>r) (double --)

Push double to the return stack.

(>r) is an internal definition compiled by >r.

(>r) (single --)

Push single to the return stack.

StrongForth.f 3.1 Glossary: assembler 8

(>r) is an internal definition compiled by >r.

(>token) (definition stack-diagram -- token)

token is the execution token of definition. An exception is thrown if the stack diagram of
definition does not match stack-diagram according to the rules of the StrongForth data type
system. Delete stack-diagram.

(abort") (single caddress -> character unsigned --)

If single is not equal to zero, copy the string caddress -> character unsigned to
line, fill the remainder of line with spaces and throw an exception with code -2.

(abort”) is an internal definition compiled by abort”.

(again) (c:sys --)

Append the runtime semantics given below to the current definition, resolving the backward
reference c:sys.

Runtime: Continue execution at the location specified by c:sys. If no other control flow words
are used, any program code after (again) will not be executed.

(again) is an internal definition compiled by again.

(ahead) (-- c:sys)

Put the location of a new unresolved forward reference c:sys onto the stack. Append the runtime
semantics given below to the current definition. The semantics are incomplete until c:sys is
resolved.

Runtime: Continue execution at the location specified by the resolution of c:sys.

(ahead) is an internal definition compiled by ahead.

(begin) (-- c:sys)

Put the next location for a transfer of control, c:sys, onto the stack. Append the runtime
semantics given below to the current definition.

Runtime: Continue execution.

(begin) is an internal definition compiled by begin.

(bind) (class-attributes "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Find a virtual definition name that
matches the compiler data type heap according to the rules of the StrongForth data type system. If
no such virtual definition is found, compile this and try finding name again. Append the runtime
semantics of the virtual definition name that is bound to the class associated with class-
attributes to the current definition. An exception is thrown if no suitable virtual definition
name is found or if name is not a virtual definition within the scope of the class associated with
class-attributes. An ambiguous condition exists if (bind) is executed in interpretation
state.

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 9

(case) (-- c:sys)

Compilation: Mark the start of the case ... of ... endof ... endcase structure.
Append the runtime semantics given below to the current definition.

Runtime: Continue execution.

(case) is an internal definition compiled by case.

(compile) (definition --)

Compile the semantics of definition into the current definition.

(compile) is a low-level compilation word that does not consider stack effects.

(compile) is a virtual method of the definition class.

(create) (caddress -> character unsigned --)

Create a definition with the name specified by the string caddress -> character
unsigned and the execution semantics defined below, and make it the current definition.
create does not allocate memory in the definition's data field.

Execution: Execute the definition. The default execution semantics of the new definition is placing
the address of its data field onto the stack.

Note that the stack diagram of the new definition has to be explicitly specified. The execution
semantics may be extended by does> or ;code.

(do) (-- c:sys)

Put c:sys onto the stack. Append the runtime semantics given below to the current definition.
The semantics are incomplete until resolved by a consumer of c:sys such as (loop) and
(+loop).

Runtime: (integer 1st --) or (address 1st --)

Set up loop control parameters with the first parameter as the index and the second parameter as the
limit and continue executing immediately following (do).

(do) is an internal definition used by do.

(does) (definition --)

Finish the current definition by specifying definition as the definition performing its runtime
code. An exception is thrown if the current definition was not created by create. If the current
definition has no stack diagram, use the stack diagram of definition, except for the last input
parameter, as its stack diagram. An exception is thrown if definition has no input parameters
or if definition has one or more output parameters that reference the last input parameter.

(does) is an internal definition compiled by does>.

(does>) (c:sys colon-definition -- 1st colon-definition)

Compilation: Append the runtime semantics below to the current definition.

strong.sf

StrongForth.f 3.1 Glossary: assembler 10

Runtime: Replace the execution semantics of the most recent definition with the execution
semantics given below. Return control to the calling definition. An ambiguous condition exists if
name was not defined with create or a user-defined word that calls create.

Execution: Execute the portion of the definition that is being compiled followong (does).

(does>) is an internal definition compiled by does>.

(else) (c:sys origin -- 1st 2nd)

Compilation: Put the location of a new unresolved forward reference 1st onto the stack. Append
the runtime semantics given below to the current definition. The semantics will be incomplete until
1st is resolved (e.g., by then). Resolve the forward reference c:sys using the location
following the appended runtime semantics. 2nd is origin.

Runtime: Continue execution at the location given by the resolution of 1st.

(else) is an internal definition used by else.

(end-code) (code-definition -- 1st)

End compilation of a code definition.

(endcase) (c:sys --)

Compilation: Mark the end of the case ... of ... endof ... endcase structure. Use
c:sys to resolve the entire structure. Append the runtime semantics given below to the current
definition.

Runtime: Continue execution.

Note: During runtime, do not discard the case selector.

(endcase) is an internal definition used by endcase.

(endof) (c:sys -- 1st)

Compilation: Mark the end of the of ... endof part of the case structure. The next location
for a transfer of control resolves the reference given by c:sys. Append the runtime semantics
given below to the current definition. Replace the first c:sys with 1st, to be resolved by
(endcase).

Runtime: Continue execution at the location specified by the consumer of 1st.

(endof) is an internal definition used by endof.

(execute) (definition --)

Execute the semantics of definition.

(execute) is a low-level execution word that does not consider stack effects.

(execute) is a virtual method of the definition class.

(execute) (token --)

Execute token.

StrongForth.f 3.1 Glossary: assembler 11

Note that (execute) does not verify or update the data type heap. (execute) is a low-level
definition that should be used carefully, because it may corrupt the data type system. Especially, it
should not be used in place of execute.

(forget) (definition definition --)

Delete the second definition and all previous definitions in the same vocabulary up to and
excluding the first definition.

(if) (-- c:sys)

Compilation: Put the location of a new unresolved forward reference c:sys onto the stack.
Append the runtime semantics given below to the current definition. The semantics are incomplete
until c:sys is resolved, e.g., by then or else.

Runtime: (single --)

If all bits of single are zero, continue execution at the location specified by the resolution of
c:sys.

(if) is an internal definition used by if.

(last-local) (--)

When executed during compilation, indicate the system that no more locals will be defined.

(leave) (--)

Execution: Discard the current loop control parameters. An ambiguous condition exists if they are
unavailable. Continue execution immediately following the innermost syntactically enclosing do
... loop or do ... +loop or ?do ... loop or ?do ... +loop.

(leave) is an internal definition used by leave.

(local) (caddress -> character unsigned --)

Execution: If unsigned is non-zero, create a new single-cell local whose definition name is given
by the character string caddress -> character unsigned. The local’s data type is the
one that was most recently dropped from the compiler data type heap. If unsigned is zero, mark
the end of local definitions and caddress -> character has no significance.

An ambiguous condition exists if (local) is executed in interpretation state.

The result of executing (local) during compilation is creating a set of named local identifiers,
each of which is a definition that only has execution semantics within the scope of that definition's
source.

Runtime: Push the local's value onto the stack.

(local) (local-definition --)

An ambiguous condition exists if (local) is executed in interpretation state.

Execution: Create a set of named local identifiers, each of which is a definition that only has
execution semantics within the scope of that definition's source.

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 12

Runtime: Push the local's value onto the stack.

(loop) (c:sys --)

Append the runtime semantics given below to the current definition. Resolve the destination of all
unresolved occurrences of leave between the location given by c:sys and the next location for
a transfer of control.

Runtime: (--)

An ambiguous condition exists if the loop control parameters are unavailable. Add one to the loop
index, considering the rules of address arithmetic. If the loop index did not cross the boundary
between the loop limit minus one and the loop limit, continue execution at the beginning of the
loop. Otherwise, discard the current loop control parameters and continue execution immediately
following the loop.

(loop) is an internal definition compiled by loop.

(new) (address -> object vtable -> 2nd -– 2nd)

Initialize the virtual method table pointer of an object starting at address -> object with
vtable -> 2nd, and return the object as 2nd. The initial contents of the object's members are
undefined. An ambiguous condition exists if vtable -> 2nd is not the address of the virtual
method table of the class of object.

(member) (unsigned object-size data-type "<spaces>name" – 2nd)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 2nd is equal to
object-size plus unsigned.

name is referred to as a class member. (members) reserves unsigned bits for class members
of the data type pointed to by dt-here.

Execution: (x -- addr -> y)

addr -> y is the address of an array of class members of the object x, that were reserved at the
time name was created. addr is data-type. y is the data type pointed to by dt-here.

(member) is an internal definition used by all versions of members.

(new) (vtable -> object -- 2nd)

Allocate a chunk of contiguous dynamic memory space for object. Initialize the virtual method
table pointer of the object with vtable -> object, and return the object as 2nd. The initial
contents of the allocated object's members are undefined. An exception is thrown if memory
allocation fails. An ambiguous condition exists if vtable -> object is not the address of the
virtual method table of the class of object.

(of) (c:sys -- 1st)

Compilation: Put c:sys onto the stack. Append the runtime semantics given below to the current
definition. The semantics are incomplete until resolved by a consumer of c:sys such as
(endof).

strong.sf

StrongForth.f 3.1 Glossary: assembler 13

Runtime: (single 1st -- 1st) or (single 1st –-)

If single and 1st are not equal, discard 1st and continue execution at the location specified by
the consumer of c:sys, e.g., following the next endof. Otherwise, discard single and 1st
and continue execution in line.

(of) is an internal definition compiled by of.

(params>dt) (data-type address -> data-type --)

If data-type does not reference another data type, append data-type to the data type heap
selected by state and finish execution. Otherwise, append the referenced compound data type
from the list of data types starting at address -> data-type to the data type heap selected
by state. If the referenced compound data type contains itself a reference to another compound
data type, the tail of the referenced compound data type is recursively substituted by the referenced
data type. An exception is thrown if the data type heap overflows.

(quit) (--)

(quit) is executed by quit immediately before entering the interpreter loop. The semantics is
initialized with ignore-friends.

(quit) is a deferred definition.

(r>) (-- single)

Transfer single from the return stack.

(r>) is an internal definition used by r>.

(repeat) (c:sys origin c:sys – 2nd)

Compilation: Append the runtime semantics given below to the current definition, resolving the
backward reference c:sys (third parameter). Resolve the forward reference c:sys (first
parameter) using the location following the appended runtime semantics. 2nd is origin.

Runtime: Continue execution at the location given by the second c:sys.

(repeat) is an internal definition compiled by repeat.

(replaces) ((--string) caddress -> character unsigned --)

Create a definition with the name specified by the character string caddress -> character
unsigned with the execution semantics defined below. The definition specifies a replacement
string for substitute.

Execution: (-- caddress -> character unsigned)

caddress -> character unsigned is the text returned by executing (--string) at
execution time.

(replaces) (caddress -> character unsigned caddress -> character
unsigned --)

strext.sf

strext.sf

StrongForth.f 3.1 Glossary: assembler 14

Create a definition with the name specified by the second character string caddress ->
character unsigned with the execution semantics defined below. The definition specifies a
replacement string for substitute.

Execution: (-- caddress -> character unsigned)

caddress -> character unsigned is a copy of the second character string caddress
-> character unsigned provided to (replaces).

(se.) (float signed --)

Send float with a trailing space using exponential notation to the default output stream. The
significand is greater than or equal to 1.0 and less than 10.0 to the power signed, and the decimal
exponent is a multiple of signed:

Exponential notation := <significand><exponent>
<significand> := [-]<digits>.<digits0>
<exponent> := e[-|+]<digit><digit><digit>
<digits> := <digit><digits0>
<digits0> := <digit>*
<digit> := { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }

An ambiguous condition exists if signed is not greater than zero. An exception is thrown if the
value of the number-conversion radix base is not (decimal) 10.

(se.) is an internal definition used by e. and s..

(static) (vtable -> object – 2nd)

Allot a chunk of contiguous memory in the data space for object. Initialize the virtual method
table pointer of the object with vtable -> object, and return the object as 2nd. The initial
contents of the allotted object’s members are undefined. An exception is thrown if the data space
does not have enough unused memory cells. An ambiguous condition exists if vtable ->
object is not the address of the virtual method table of the class of object.

(substitute) (unsigned caddress -> character unsigned -- 1st 2nd
4 th)

Scan the character string caddress -> character unsigned for the first delimiter
character. If the name before the delimiter character is a valid replacement string, send the
replacement to the default output stream and increment the first unsigned, giving 1st.
Otherwise, send a delimiter character and the text up to and including the delimiter
character to the default output stream.

2nd 4th is caddress -> character unsigned, adjusted with /string by the number
of characters up to and including the first delimiter character.

(substitute) is an internal definition used by substitute.

(then) (c:sys --)

Compilation: Append the runtime semantics given below to the current definition. Resolve the
forward reference c:sys using the location of the appended runtime semantics.

Runtime: Continue execution.

float.sf

strong.sf

strext.sf

StrongForth.f 3.1 Glossary: assembler 15

(then) is an internal definition compiled by then.

(unsigned--)(stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type (unsigned-
-). This data type is the qualified token of a definition with the stack diagram (unsigned --
).

(until) (c:sys --)

Compilation: Append the runtime semantics given below to the current definition, resolving the
backward reference c:sys.

Runtime: (single --)

If all bits of single are zero, continue execution at the location specified by c:sys.

(variable) (data-type "<spaces>name" -- variable-definition)

Skip leading space delimiters. Parse name delimited by a space. Create variable-
definition for name with the current data space pointer as the value. The data type of
variable-definition is composed of data-type as the head and the most recently
dropped compound data type on the data type heap as the tail.

(vtable) (-- vtable)

Interpretation: Creates the input parameter with data type vtable -> object for (new).
object is the data type that has most recently been dropped from the interpreter data type heap.
vtable is the virtual method table of object.

Compilation: An ambiguous condition exists if (vtable) is executed in compilation state.

(vtable) is an internal definition used by new.

(while) (c:sys destination origin -- c:sys 3rd 1st 2nd)

Compilation: Put the location of a new unresolved forward reference c:sys onto the stack, under
the existing origin. Append the runtime semantics given below to the current definition. The
semantics are incomplete until both c:sys and 1st are resolved (e.g., by (repeat)). 3rd is
origin, 2nd is desination.

Runtime: (single --)

If all bits of single are zero, continue execution at the location specified by the resolution of the
forward reference c:sys.

) (colon-definition stack-diagram -- 1st)

Throws an exception if stack-diagram is incomplete. Make stack-diagram the stack
diagram of the colon-definition. Delete stack-diagram. Append the input parameters
of colon-definition to the compiler data type heap, starting with the first input parameter.
Data type references within the input parameters are being resolved by recursively appending the
referenced data types onto the compiler data type heap. An exception is thrown if the data type
heap overflows. 1st is colon-definition.

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 16

) marks the end of a colon definition's stack diagram.

) (stack-diagram --)

Throws an exception if stack-diagram is incomplete. Make stack-diagram the stack
diagram of the latest definition. Delete stack-diagram.

) marks the end of a definition's stack diagram.

)' (stack-diagram "<spaces>name" -- definition)

Throws an exception if stack-diagram is incomplete. Skip leading space delimiters. Parse
name delimited by a space. Search the context vocabularies for name with exactly the given stack
diagram and return its latest occurrence as definition. Delete stack-diagram. An
exception is thrown if name with exactly the given stack diagram is not found.

)procreates (stack-diagram "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. The definition is a new data type that is a direct subtype of
data type token. It is called a qualified token.

Create a definition execute, whose stack diagram is a copy of stack-diagram, supplemented
with the previously created qualified token as the last input parameter.

)procreates marks the end of a stack diagram.

name Execution: (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with the data type of the
qualified token.

execute Execution: (x0 ... xm name -- y0 ... yn)

Execute the qualified token with data type name. (x0 ... xm -- y0 ... yn) is the
stack diagram that was supplied to)procreates. x0 ... xm are the input parameters of the
qualified token. y0 ... yn are the output parameters of the qualified token.

* (float float -- 1st)

Multiply two floating-point numbers float giving the product 1st. The result has the same data
type as the multiplicand.

* (integer unsigned -- 1st)

Multiply integer by unsigned giving the product 1st. Note that the multiplicand can be any
integer (signed or unsigned), while the multiplicator is unsigned. The result has the same data type
as the multiplicand. Since the product of an unsigned number (multiplicand) and a signed number
(multiplicator) should be a signed number, the two operands have to be swapped in this case.

* (signed signed -- 1st)

Multiply two signed numbers giving the product 1st. The result has the same data type as the
multiplicand.

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 17

** (float float -- 1st)

Raise the first float to the power given by the second float, giving 1st. An ambiguous
condition exists if the second float is negative, or if the quotient lies outside of the range of a
floating-point number.

*/ (signed signed signed -- 1st)

Multiply the first signed by the second signed producing an intermediate signed double-
precision result. Divide the intermediate result by the third signed giving the signed single-
precision quotient 1st. An exception is thrown if the third signed is zero. An ambiguous
condition exists if the quotient 1st lies outside the range of a signed single-precision number.

*/ (signed-double signed signed -- 1st)

Multiply signed-double by the first signed producing an intermediate signed triple-
precision result. Divide the intermediate result by the second signed giving the signed double-
precision quotient 1st. An exception is thrown if the second signed is zero. An ambiguous
condition exists if the quotient 1st lies outside of the range of a signed double-precision number.

*/ (unsigned unsigned unsigned -- 1st)

Multiply the first unsigned by the second unsigned producing an intermediate unsigned
double-precision result. Divide the intermediate result by the third unsigned giving the unsigned
single-precision quotient 1st. An exception is thrown if the third unsigned is zero. An
ambiguous condition exists if the quotient 1st lies outside the range of an unsigned single-
precision number.

*/mod (signed signed signed -- 3rd 1st)

Multiply the first signed by the second signed producing an intermediate signed double-
precision result. Divide the intermediate result by the third signed giving the signed single-
precision remainder 3rd and the signed single-precision quotient 1st. An exception is thrown if
the third signed is zero. An ambiguous condition exists if the quotient 1st lies outside the range
of a signed single-precision number.

*/mod (unsigned unsigned unsigned -- 3rd 1st)

Multiply the first unsigned by the second unsigned producing an intermediate unsigned
double-precision result. Divide the intermediate result by the third unsigned giving the unsigned
single-precision remainder 3rd and the unsigned single-precision quotient 1st. An exception is
thrown if the third unsigned is zero. An ambiguous condition exists if the quotient 1st lies
outside the range of an unsigned single-precision number.

*10^n (float signed -- 1st)

1st is equal to float multiplied by 10 raised to the power of signed. signed may be
positive, negative, or zero.

float.sf

StrongForth.f 3.1 Glossary: assembler 18

+ (address -> double integer -- 1st)

Add integer to address -> double, giving the sum 1st. Since address points to a
double cell, integer is multiplied with the number of address units per double cell before the
actual addition takes place.

+ (address -> float integer -- 1st)

Add integer to address -> float, giving the sum 1st. Since address points to a
floating-point number, integer is multiplied with the number of address units per floating-point
number before the actual addition takes place.

+ (address -> single integer -- 1st)

Add integer to address -> single, giving the sum 1st. Since address points to a cell,
integer is multiplied with the number of address units per cell before the actual addition takes
place.

+ (address integer -- 1st)

Add integer to address, giving the sum 1st.

+ (caddress integer -- 1st)

Add integer to caddress, giving the sum 1st. Since caddress points to an item of
character size, integer is multiplied with the number of address units per character before the
actual addition takes place.

+ (dfaddress integer -- 1st)

Add integer to dfaddress, giving the sum 1st. Since dfaddress points to double-
precision floating-point number, integer is multiplied with the number of address units per
double-precision floating-point number before the actual addition takes place.

+ (float float -- 1st)

Add the second float to the first float, giving the sum 1st.

+ (integer integer -- 1st)

Add the second integer to the first integer, giving the sum 1st.

+ (integer-double integer -- 1st)

Add integer with zero extension to integer-double, giving the double-precision sum 1st.

+ (integer-double integer-double -- 1st)

Add the second integer-double to the first integer-double, giving the sum 1st.

StrongForth.f 3.1 Glossary: assembler 19

+ (integer-double signed -- 1st)

Add signed with sign extension to integer-double, giving the double-precision sum 1st.

+ (sfaddress integer -- 1st)

Add integer to sfaddress, giving the sum 1st. Since sfaddress points to single-
precision floating-point number, integer is multiplied with the number of address units per
single-precision floating-point number before the actual addition takes place.

+! (float address -> float --)

Add float to the floating-point number stored at address -> float.

+! (float dfaddress -> float --)

Add float to the double-precision floating-point number stored at dfaddress -> float.

+! (float sfaddress -> float --)

Add float to the single-precision floating-point number stored at sfaddress -> float.

+! (integer address -> address --)

Add integer to the address stored at address -> address.

+! (integer address -> address -> double --)

Add integer to the address stored at address -> address -> double. Since the
address points to a double cell, integer is multiplied with the number of address units per double
cell before the actual addition takes place.

+! (integer address -> address -> float --)

Add integer to the address stored at address -> address -> float. Since the address
points to a floating-point number, integer is multiplied with the number of address units per
floating-point number before the actual addition takes place.

+! (integer address -> address -> single --)

Add integer to the address stored at address -> address -> single. Since the
address points to a cell, integer is multiplied with the number of address units per cell before the
actual addition takes place.

+! (integer address -> caddress --)

Add integer to the address stored at address -> caddress. Since the address points to an
item of character size, integer is multiplied with the number of address units per character
before the actual addition takes place.

StrongForth.f 3.1 Glossary: assembler 20

+! (integer address -> dfaddress --)

Add integer to the address stored at address -> dfaddress. Since the address points to a
double-precision floating-point number, integer is multiplied with the number of address units
per double-precision floating-point number before the actual addition takes place.

+! (integer address -> integer --)

Add integer to the integer number stored at address -> integer.

+! (integer address -> integer-double --)

Add integer with zero extension to the double-precision integer number stored at address -
> integer-double.

+! (integer address -> sfaddress --)

Add integer to the address stored at address -> sfaddress. Since the address points to a
single-precision floating-point number, integer is multiplied with the number of address units
per single-precision floating-point number before the actual addition takes place.

+! (integer caddress -> integer --)

Add integer to the character size integer number stored at caddress -> integer.

+! (integer-double address -> integer-double --)

Add integer-double to the double-precision integer number stored at address ->
integer-double.

+! (signed address -> integer-double --)

Add signed with sign extension to the double-precision integer number stored at address ->
integer-double.

+loop (c:sys do-destination --) compile-only

Compilation: Append the runtime semantics given below to the current definition. Resolve both the
forward references and the backward references contained in c:sys. Delete the loop index i.
Rename the loop index j, if it exists, back to i. An exception is thrown if the contents of the
compiler data type heap do not exactly match the copy that was saved when do-destination
was created.

Runtime: (integer --)

An ambiguous condition exists if the loop control parameters are unavailable. Add integer to
the loop index. If the loop index crosses the boundary between the loop limit minus one and the
loop limit, discard the current loop control parameters and continue execution. Otherwise, branch
to the beginning of the loop.

Note: +loop takes regard of the data type of the loop index.

strong.sf

StrongForth.f 3.1 Glossary: assembler 21

If the loop index is an address of a single cell, integer is multiplied with the size of a single cell
in address units before it is added to the loop index.

If the loop index is an address of a double cell, integer is multiplied with the size of a double
cell in address units before it is added to the loop index.

If the loop index is a character address, integer is multiplied with the size of a character in
address units before it is added to the loop index.

If the loop index is an address of a floating-point number, integer is multiplied with the size of a
floating-point number in address units before it is added to the loop index.

If the loop index is an address of a single-precision floating-point number, integer is multiplied
with the size of a single-precision floating-point number in address units before it is added to the
loop index.

If the loop index is an address of a double-precision floating-point number, integer is multiplied
with the size of a double-precision floating-point number in address units before it is added to the
loop index.

, (double --)

Reserve two cells in the default memory space and store double in the two cells. If the first
unused address of the default memory space is aligned prior to execution of ,, it will remain
aligned when , finishes execution. An ambiguous condition exists if the first unused address of the
default memory space is not aligned prior to execution of ,. An exception is thrown if the default
memory space overflows.

, (float --)

Reserve space for one floating-point number in the default memory space and store float in it.
An ambiguous condition exists if the first unused address of the default memory space is not
aligned prior to execution of ,. An exception is thrown if the default memory space overflows.

, (single --)

Reserve one cell in the default memory space and store single in the cell. If the first unused
address of the default memory space is aligned prior to execution of ,, it will remain aligned when
, finishes execution. An ambiguous condition exists if the first unused address of the default
memory space is not aligned prior to execution of ,. An exception is thrown if the default memory
space overflows.

- (address -> double 1st -- signed)

Subtract 1st from address –> double, giving an intermediate difference. Since address
-> double points to a double cell, the result signed is equal to the difference divided by the
number of address units per double cell.

- (address -> double integer -- 1st)

Subtract integer from address -> double, giving the difference 1st. Since address
points to a double cell, integer is multiplied with the number of address units per double cell
before the actual subtraction takes place.

StrongForth.f 3.1 Glossary: assembler 22

- (address -> float 1st -- signed)

Subtract 1st from address -> float, giving an intermediate difference. Since address -
> float points to a floating-point number, the result signed is equal to the difference divided
by the number of address units per floating-point number.

- (address -> float integer -- 1st)

Subtract integer from address -> float, giving the difference 1st. Since address
points to a floating-point number, integer is multiplied with the number of address units per
floating-point number before the actual subtraction takes place.

- (address -> single 1st -- signed)

Subtract 1st from address –> single, giving an intermediate difference. Since address
-> single points to a cell, the result signed is equal to the difference divided by the number
of address units per cell.

- (address -> single integer -- 1st)

Subtract integer from address -> single, giving the difference 1st. Since address
points to a cell, integer is multiplied with the number of address units per cell before the actual
subtraction takes place.

- (address 1st -- signed)

Subtract 1st from address, giving signed.

- (address integer -- 1st)

Subtract integer from address, giving the difference 1st.

- (caddress 1st -- signed)

Subtract 1st from caddress, giving an intermediate difference. Since caddress points to a
character-size item, the result signed is equal to the difference divided by the number of address
units per character.

- (caddress integer -- 1st)

Subtract integer from caddress, giving the difference 1st. Since caddress points to a
character, integer is multiplied with the number of address units per character before the actual
subtraction takes place.

- (dfaddress 1st -- signed)

Subtract 1st from dfaddress, giving an intermediate difference. Since dfaddress points to a
double-precision floating-point number, the result signed is equal to the difference divided by the
number of address units per double-precision floating-point number.

StrongForth.f 3.1 Glossary: assembler 23

- (dfaddress integer -- 1st)

Subtract integer from dfaddress, giving the difference 1st. Since dfaddress points to a
double-precision floating-point number, integer is multiplied with the number of address units
per double-precision floating-point number before the actual subtraction takes place.

- (float float -- 1st)

Subtract the second float from the first float, giving the difference 1st.

- (integer integer -- 1st)

Subtract the second integer from the first integer, giving the difference 1st.

- (integer-double integer -- 1st)

Subtract integer with zero extension from integer-double, giving the double-precision
difference 1st.

- (integer-double integer-double -- 1st)

Subtract the second integer-double from the first integer-double, giving the difference
1st.

- (integer-double signed -- 1st)

Subtract signed with sign extension from integer-double, giving the double-precision
difference 1st.

- (sfaddress 1st -- signed)

Subtract 1st from sfaddress, giving an intermediate difference. Since sfaddress points to a
single-precision floating-point number, the result signed is equal to the difference divided by the
number of address units per single-precision floating-point number.

- (sfaddress integer -- 1st)

Subtract integer from sfaddress, giving the difference 1st. Since sfaddress points to a
single-precision floating-point number, integer is multiplied with the number of address units
per single-precision floating-point number before the actual subtraction takes place.

-- (stack-diagram -- 1st)

Set a private flag in stack-diagram. From now on, all appended data types are output parameters.
1st is stack-diagram. An exception is thrown if -- is preceded by -> or if it is used more
than once within the same stack diagram.

-- is used in a stack diagram to separate input and output parameters.

-> (stack-diagram -- 1st)

StrongForth.f 3.1 Glossary: assembler 24

Add the prefix attribute to the data-type most recently appended to stack-diagram. 1st is
stack-diagram. An exception is thrown if stack-diagram is still empty, if -> is preceeded
by --, if the prefix attribute is already set or if the most recently appended data type is a reference.

-> is used in a stack diagram to create compound data types as input or output parameters.

-> (x "<spaces>name" -- y) immediate

Skip leading space delimiters. Parse name delimited by a space. Convert x to y, where x is any
data type and y is a compound data type created by appending the basic data type identified by
name to x. An exception is thrown if name is not the name of a data type.

-leading (caddress -> character unsigned -- 1st 3rd)

If unsigned is greater than zero, 3rd is equal to unsigned less the number of spaces at the
beginning of the character string specified by caddress -> character unsigned, and
1st is equal to caddress -> character plus the number of spaces at the beginning of the
character string. If unsigned is zero, 3rd is zero and 1st is equal to caddress ->
character.

-leading (caddress -> character unsigned 2nd -- 1st 3rd)

If unsigned is greater than zero, 3rd is equal to unsigned less the number of characters equal
to 2nd at the beginning of the character string specified by caddress -> character
unsigned, and 1st is equal to caddress -> character plus the number of characters
equal to 2nd at the beginning of the character string. If unsigned is zero, 3rd is zero and 1st is
equal to caddress -> character.

-trailing (caddress -> character unsigned -- 1st 3rd)

1st is equal to caddress -> character. If unsigned is greater than zero, 3rd is equal to
unsigned less the number of spaces at the end of the character string specified by caddress -
> character unsigned. If unsigned is zero or the entire string consists of spaces, 3rd is
zero.

-trailing (caddress -> character unsigned 2nd -- 1st 3rd)

1st is equal to caddress -> character. If unsigned is greater than zero, 3rd is equal to
unsigned less the number of characters equal to 2nd at the end of the character string specified
by caddress -> character unsigned. If unsigned is zero or the entire string consists
of characters equal to 2nd, 3rd is zero.

. (character --)

If character is a graphic character in the ASCII character set, send character to the default
output stream. The effect of . for all other values of character is undefined.

. (data-type --)

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 25

Send the name of data-type as a character string plus a trailing space to the default output
stream. If data-type is a reference, send 1st, 2nd, 3rd or n th, depending on the value n of the
offset. An exception is thrown if data-type is not a valid data type.

. (definition --)

Send the name, the stack diagram and the attributes of definition to the default output stream.

. (double --)

Send double as an unsigned double-precision number in free field format to the default output
stream.

. (flag --)

If flag is true, send true and a trailing space to the default output stream. If flag is false, Send
false and a trailing space to the default output stream.

. (float --)

Send float with a trailing space using fixed-point notation to the default output stream:

Fixed-point notation := <significand>
<significand> := [-]<digits>.<digits0>
<digits> := <digit><digits0>
<digits0> := <digit>*
<digit> := { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }

An exception is thrown if the value of the number-conversion radix base is not (decimal) 10.

. (signed --)

Send signed as a signed number in free field format to the default output stream.

. (signed-double --)

Send signed-double as a signed double-precision number in free field format to the default
output stream.

. (single --)

Send single as an unsigned number in free field format to the default output stream.

. (vocabulary --)

If vocabulary is the protected vocabulary of a class, send the class name plus a trailing space to the
default output stream. Otherwise, send the name of the vocabulary to the default output stream.

." ("ccc<quote>" --) compile-only

strong.sf

strong.sf

strong.sf

float.sf

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 26

Parse ccc delimited by " (quote). Append the runtime semantics given below to the current
definition.

Runtime: Send ccc to the default output stream.

." ("ccc<quote>" --) execute-only

Parse ccc delimited by " (quote). Send ccc to the default output stream.

.(("ccc<right-paren>" --) compile-only

Parse ccc delimited by) (right parenthesis). Append the runtime semantics given below to the
current definition.

Runtime: Send ccc to the default output stream.

.(("ccc<right-paren>" --) execute-only

Parse ccc delimited by) (right parenthesis). Send ccc to the default output stream.

.addr (address --)

Send address in an eight-digit hexadecimal format with a trailing colon to the default output
stream.

.attributes (definition --)

If definition has been marked as immediate, send immediate plus a trailing space to the
default output stream.

If definition has been marked as execute-only, send execute-only plus a trailing space to
the default output stream.

If definition has been marked as compile-only, send compile-only plus a trailing space to
the default output stream.

.byte (single --)

Send the least significant byte of single in a two-digit hexadecimal format with no trailing space
to the default output stream.

.cell (single --)

Send single in an eight-digit hexadecimal format with no trailing space to the default output
stream.

.exponent (signed --)

Send signed as a floating point exponent in the format esnnn to the default output stream,
where s is the sign (+ or -) and nnn is the absolute value of signed represented as a three-digit
decimal value.

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

float.sf

StrongForth.f 3.1 Glossary: assembler 27

.name (definition --)

If definition has a name, send the name plus a trailing space to the default output stream.

.params (address -> data-type unsigned --)

Send a list of unsigned data types starting at address -> data-type, including prefix and
reference attributes, to the default output stream.

.prefix (data-type --)

If data-type has the prefix attribute, send -> plus a trailing space to the default output stream.

.r (double integer --)

Send double as an unsigned double-precision number right aligned in a field integer
characters wide to the default output stream. integer is assumed to be a signed number. If
integer is not positive or the number of characters required is greater than integer, all digits
are sent with no leading spaces in a field as wide as necessary.

.r (signed integer --)

Send signed as a signed number right aligned in a field integer characters wide to the default
output stream. integer is assumed to be a signed number. If integer is not positive or the
number of characters required is greater than integer, all digits are sent with no leading spaces
in a field as wide as necessary.

.r (signed-double integer --)

Send signed-double as a signed double-precision number right aligned in a field integer
characters wide to the default output stream. integer is assumed to be a signed number. If
integer is not positive or the number of characters required is greater than integer, all digits
are sent with no leading spaces in a field as wide as necessary.

.r (single integer --)

Send single as an unsigned number right aligned in a field integer characters wide to the
default output stream. integer is assumed to be a signed number. If integer is not positive or
the number of characters required is greater than integer, all digits are sent with no leading
spaces in a field as wide as necessary.

.s (--) immediate

Interpretation: Send the names of the data types on the interpreter data type heap, including prefix
attributes to the default output stream.

Compilation: Send the names of the data types on the compiler data type heap, including prefix
attributes to the default output stream.

Note: .s does not send the values of the items on the data stack to the default output stream.

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 28

.sign (flag --)

If flag is true, send a minus sign (-) to the default output stream.

.sign+ (flag --)

If flag is true, send a minus sign (-) to the default output stream. Otherwise, send a plus sign
(+) to the default output stream.

/ (float float -- 1st)

Divide the first float by the second float, giving the quotient 1st. The result has the same
data type as the dividend. An exception is thrown if the second float is zero, or if the quotient
lies outside of the range of a floating-point number.

/ (signed signed -- 1st)

Divide the first signed by the second signed, giving the signed quotient 1st. An exception is
thrown if the second signed is zero. If both operands differ in sign, the result returned will be the
same as that returned by the phrase swap s>d swap sm/rem nip.

/ (unsigned unsigned -- 1st)

Divide the first unsigned by the second unsigned, giving the unsigned quotient 1st. An
exception is thrown if the second unsigned is zero.

/10^n (float signed -- 1st)

1st is equal to float divided by 10 raised to the power of signed. An ambiguous condition
exists if signed is negative.

/counted-string (-- unsigned)

unsigned is the maximum size of a counted string, in characters.

/hold (-- unsigned)

unsigned is the size in characters of the pictured numeric output string buffer.

/mod (signed signed -- 2nd 1st)

Divide the first signed by the second signed, giving the signed remainder 2nd and the signed
quotient 1st. An exception is thrown if the second signed is zero. If both operands differ in
sign, the result returned will be the same as that returned by the phrase swap s>d swap
sm/rem.

/mod (unsigned unsigned -- 2nd 1st)

Divide the first unsigned by the second unsigned, giving the unsigned remainder 2nd and the
unsigned quotient 1st. An exception is thrown if the second unsigned is zero.

float.sf

float.sf

float.sf

StrongForth.f 3.1 Glossary: assembler 29

/pad (-- unsigned)

unsigned is the size in characters of the scratch area pointed to by pad.

/params (-- unsigned)

unsigned is the maximum number of basic data types in a stack diagram.

/string (caddress -> character unsigned -- 1st 3rd)

Adjust the character string at caddress -> character with length unsigned by one
character. The resulting character string, specified by 1st 3rd, begins at caddress ->
character plus one character and is unsigned minus one characters long.

/string (caddress -> character unsigned integer -- 1st 3rd)

Adjust the character string at caddress -> character with length unsigned by integer
characters. The resulting character string, specified by 1st 3rd, begins at caddress ->
character plus integer characters and is unsigned minus integer characters long.

Note: integer may be a negative value.

0.r (double integer --)

Send double as an unsigned double-precision number right aligned with leading zeros (if
required) in a field integer characters wide to the default output stream. integer is assumed
to be a signed number. If integer is not positive or the number of characters required is greater
than integer, all digits are sent with no leading zeros in a field as wide as necessary.

0.r (signed integer --)

Send signed as a signed number right aligned with leading zeros (if required) in a field
integer characters wide to the default output stream. integer is assumed to be a signed
number. If integer is not positive or the number of characters required is greater than
integer, all digits are sent with no leading zeros in a field as wide as necessary.

0.r (signed-double integer --)

Send signed-double as a signed double-precision number right aligned with leading zeros (if
required) in a field integer characters wide to the default output stream. integer is assumed
to be a signed number. If integer is not positive or the number of characters required is greater
than integer, all digits are sent with no leading zeros in a field as wide as necessary.

0.r (single integer --)

Send single as an unsigned number right aligned with leading zeros (if required) in a field
integer characters wide to the default output stream. integer is assumed to be a signed
number. If integer is not positive or the number of characters required is greater than
integer, all digits are sent with no leading zeros in a field as wide as necessary.

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 30

0< (float -- flag)

flag is true if and only if float is less than zero.

0< (signed -- flag)

flag is true if and only if signed is less than zero.

0< (signed-double -- flag)

flag is true if and only if signed-double is less than zero.

0<= (float -- flag)

flag is true if and only if float is less than or equal to zero.

0<= (signed -- flag)

flag is true if and only if signed is less than or equal to zero.

0<= (signed-double -- flag)

flag is true if and only if signed-double is less than or equal to zero.

0<> (double -- flag)

flag is true if and only if double is not equal to zero.

0<> (float -- flag)

flag is true if and only if float is not equal to zero.

0<> (single -- flag)

flag is true if and only if single is not equal to zero.

0= (double -- flag)

flag is true if and only if double is equal to zero.

0= (float -- flag)

flag is true if and only if float is equal to zero.

0= (single -- flag)

flag is true if and only if single is equal to zero.

StrongForth.f 3.1 Glossary: assembler 31

0> (float -- flag)

flag is true if and only if float is greater than zero.

0> (signed -- flag)

flag is true if and only if signed is greater than zero.

0> (signed-double -- flag)

flag is true if and only if signed-double is greater than zero.

0>= (float -- flag)

flag is true if and only if float is greater than or equal to zero.

0>= (signed -- flag)

flag is true if and only if signed is greater than or equal to zero.

0>= (signed-double -- flag)

flag is true if and only if signed-double is greater than or equal to zero.

1+ (address -- 1st)

Add one to address giving 1st.

1+ (address -> double -- 1st)

Add the number of address units per double cell to address -> double, giving 1st.

1+ (address -> float -- 1st)

Add the number of address units per floating-point number to address -> float, giving 1st.

1+ (address -> single -- 1st)

Add the number of address units per cell to address -> single, giving 1st.

1+ (caddress -- 1st)

Add the number of address units per character to caddress, giving 1st.

1+ (dfaddress -- 1st)

Add the number of address units per double-precision floating-point number to dfaddress,
giving 1st.

StrongForth.f 3.1 Glossary: assembler 32

1+ (integer -- 1st)

Add one to integer, giving 1st.

1+ (integer-double -- 1st)

Add one to integer-double, giving 1st.

1+ (sfaddress -- 1st)

Add the number of address units per single-precision floating-point number to sfaddress,
giving 1st.

1- (address -- 1st)

Subtract one from address, giving 1st.

1- (address -> double -- 1st)

Subtract the number of address units per double cell from address -> double, giving 1st.

1- (address -> float -- 1st)

Subtract the number of address units per floating-point number from address -> float,
giving 1st.

1- (address -> single -- 1st)

Subtract the number of address units per cell from address -> single, giving 1st.

1- (caddress -- 1st)

Subtract the number of address units per character from caddress, giving 1st.

1- (dfaddress -- 1st)

Subtract the number of address units per double-precision floating-point number from
dfaddress, giving 1st.

1- (integer -- 1st)

Subtract one from integer, giving 1st.

1- (integer-double -- 1st)

Subtract one from integer-double, giving 1st.

1- (sfaddress -- 1st)

StrongForth.f 3.1 Glossary: assembler 33

Subtract the number of address units per single-precision floating-point number from
sfaddress, giving 1st.

1st (stack-diagram -- 1st)

Append a reference to the basic data type at the first position of the input parameter list, as an input
or output parameter to stack-diagram.

1st is used in a stack diagram to specify input or output parameters which should have exactly the
same data type as the first data type in the input parameter list of the same definition.

An exception is thrown if the input parameter list is empty, or if the internal storage for input and
output parameters of stack-diagram is exceeded.

2! (single 1st address -> 1st --)

Store the cell pair single 1st at address -> 1st, with 1st at address -> 1st and
single at the next consecutive cell.

2* (integer -- 1st)

Multiply integer by 2 giving the product 1st.

Note that 2* may only be used on integer values. Use lshift for shifting bits to the left.

2* (integer-double -- 1st)

Multiply integer-double by 2 giving the product 1st.

2/ (integer -- 1st)

Divide integer by 2 giving the quotient 1st.

Note that 2/ may only be used on unsigned numbers. Use rshift for shifting bits to the right.

2/ (integer-double -- 1st)

Divide integer-double by 2 giving the quotient 1st.

integer-double is assumed to be an unsigned numeric value.

2/ (signed -- 1st)

Divide signed by 2 giving the quotient 1st.

Note that 2/ may only be used on signed numbers. Use rshift for shifting bits to the right.

2/ (signed-double -- 1st)

Divide signed-double by 2 giving the quotient 1st.

2@ (address -> single -- 2nd 2nd)

StrongForth.f 3.1 Glossary: assembler 34

Fetch the cell pair 2nd 2nd stored at address -> single. The second 2nd is stored at
address -> single and the first 2nd at the next consecutive cell.

2drop (single single --)

Remove cell pair single single from the stack.

2dup (single single -- 1st 2nd 1st 2nd)

Duplicate cell pair single single.

2literal (single single --) compile-only

Compilation: Append the runtime semantics given below to the current definition.

Runtime: (single single --)

Place the first single and then the second single on the stack. Both items have the same
values and data types as were supplied at compilation time.

2nd (stack-diagram -- 1st)

Append a reference to the basic data type at the second position of the input parameter list as an
input or output parameter to stack-diagram.

2nd is used in a stack diagram to specify input or output parameters which should have exactly the
same data type as the second data type in the input parameter list of the same definition. Since the
index refers to the basic data types in the input parameter list, it is possible to build a reference to
the tail of a compound data type representing an input parameter.

An exception is thrown if the input parameter list contains less than two basic data types, if the
referenced data type is itself a reference, or if the internal storage for input and output parameters
of stack-diagram is exceeded.

2over (single single single single -- 1st 2nd 3rd 4 th 1st 2nd)

Place copies of the first single and the second single on top of the stack.

2rot (single single single single single single -- 3rd 4 th 5 th
6 th 1st 2nd)

Rotate the top three cell pairs on the stack bringing the first cell pair to the top of the stack.

2swap (single single single single -- 3rd 4 th 1st 2nd)

Exchange the two cell pairs on top of the stack.

3rd (stack-diagram -- 1st)

Append a reference to the basic data type at the third position of the input parameter list, as an
input or output parameter to stack-diagram.

strong.sf

StrongForth.f 3.1 Glossary: assembler 35

3rd is used in a stack diagram to specify input or output parameters which should have exactly the
same data type as the third data type in the input parameter list of the same definition. Since the
index refers to the basic data types in the input parameter list, it is possible to build a reference to
the tail of a compound data type representing an input parameter.

An exception is thrown if the input parameter list contains less than three basic data types, if the
referenced data type is itself a reference, or if the internal storage for input and output parameters
of stack-diagram is exceeded.

: ("<spaces>name" – c:sys colon-definition)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name,
called a colon definition. Enter compilation state. Empty and unlock the compiler data type heap.
Initialize the number of locals to zero. Start the current definition, producing c:sys colon-
definition. Append the initiation semantics given below to the current definition.

Initiation: Continue execution.

The execution semantics of name will be determined by the words compiled into the body of the
definition. The current definition cannot be found in the dictionary until it is finished or until the
execution of does> or ;code.

name Execution: (--)

Execute the definition name.

Note that the new definition does have no stack effects by default. Stack effects have to be
specified separately if they are intended. By using a stack diagram phrase (... -- ...)
immediately following : and name, the new definition is modified to incorporate stack effects.

:noname (-- colon-definition c:sys colon-definition)

Create a definition with no name, called a colon definition. Enter compilation state. Empty and
unlock the compiler data type heap. Initialize the number of locals to zero. Start the current
definition, producing c:sys colon-definition and a copy of it. Append the initiation
semantics given below to the current definition.

Initiation: Continue execution.

The execution semantics of the definition will be determined by the words compiled into its body.
The definition is incomplete until it is finished or until the execution of does> or ;code, leaving
one copy of colon-definition on the stack.

Execution: (--)

Execute the definition.

Note that the new definition does have no stack effects by default. Stack effects have to be
specified separately if they are intended. By using a stack diagram phrase (... -- ...)
immediately following :noname, the new definition is modified to incorporate stack effects.

; (c:sys colon-definition --) compile-only

Compilation: Append the runtime semantics given below to the current definition. End the current
definition and enter interpretation state, consuming c:sys colon-definition. Empty the
locals vocabulary. Lock the compiler data type heap. An exception is thrown if the contents of the
compiler data type heap do not exactly match the output parameters of the current definition.

Runtime: If the compiler data type heap is not locked, return to the calling definition.

strong.sf

StrongForth.f 3.1 Glossary: assembler 36

;code (c:sys colon-definition –- code-definition) compile-only

Compilation: Append the runtime semantics given below to the current definition. End the current
definition and enter interpretation state, consuming c:sys colon-definition and creating
code-definition. Empty the locals vocabulary. Lock the compiler data type heap. An
exception is thrown if the contents of the compiler data type heap does not exactly match the output
parameters of the current definition. Subsequent characters in the parse area typically represent
source code in assembly language, generating machine code.

Runtime: Specify the execution semantics of the most recent definition, referred to as name, as
given below. An ambiguous condition exists if the most recent definition was not defined with
create or a user-defined definition that calls create.

Initiation: Place the address of name's data field on top of the data stack.

name Execution: (--)

Perform the machine code sequence that was generated following ;code.

Note that new definitions do have no stack effects by default. Stack effects have to be specified
separately if they are intended. By using a stack diagram phrase (... -- ...) immediatly
following ;code, the new definition is modified to incorporate stack effects. Specifying a stack
diagram is mandatory, because at least the data type of name's data field address has to be present.
The data field address is always the last input parameter. The stack effect of name is defined by the
stack diagram following ;code, omitting the data field address.

< (address 1st -- flag)

flag is true if and only if address is less than 1st.

< (float 1st -- flag)

flag is true if and only if float is less than 1st.

< (integer 1st -- flag)

flag is true if and only if integer is less than 1st. integer is assumed to be an unsigned
numeric value.

< (integer-double 1st -- flag)

flag is true if and only if integer-double is less than 1st. integer-double is
assumed to be an unsigned numeric value.

< (signed 1st -- flag)

flag is true if and only if signed is less than 1st.

< (signed-double 1st -- flag)

flag is true if and only if signed-double is less than 1st.

asm.sf

StrongForth.f 3.1 Glossary: assembler 37

<# (double -- number-double)

Initialize pictured numeric output conversion. number-double is equal to double.

<= (address 1st -- flag)

flag is true if and only if address is less than or equal to 1st.

<= (float 1st -- flag)

flag is true if and only if float is less than or equal to 1st.

<= (integer 1st -- flag)

flag is true if and only if integer is less than or equal to 1st. integer is assumed to be an
unsigned numeric value.

<= (integer-double 1st -- flag)

flag is true if and only if integer-double is less than or equal to 1st. integer-
double is assumed to be an unsigned numeric value.

<= (signed 1st -- flag)

flag is true if and only if signed is less than or equal to 1st.

<= (signed-double 1st -- flag)

flag is true if and only if signed-double is less than or equal to 1st.

<> (double 1st -- flag)

flag is true if and only if double is not bit-by-bit identical with 1st.

<> (float 1st -- flag)

flag is true if and only if float is not equal to 1st.

<> (single 1st -- flag)

flag is true if and only if single is not bit-by-bit identical with 1st.

<ack> (-- character)

character is the ASCII “acknowledge” control character (code 6).

<bel> (-- character)

character is the ASCII “bell” control character (code 7).

ascii.sf

ascii.sf

StrongForth.f 3.1 Glossary: assembler 38

<bs> (-- character)

character is the ASCII “backspace” control character (code 8).

<can> (-- character)

character is the ASCII “cancel” control character (code 24).

<cr> (-- character)

character is the ASCII “carriage return” control character (code 13).

<dc1> (-- character)

character is the ASCII “device control 1” control character (code 17).

<dc2> (-- character)

character is the ASCII “device control 2” control character (code 18).

<dc3> (-- character)

character is the ASCII “device control 3” control character (code 19).

<dc4> (-- character)

character is the ASCII “device control 4” control character (code 20).

 (-- character)

character is the ASCII “delete” control character (code 127).

<dle> (-- character)

character is the ASCII “data link escape” control character (code 16).

 (-- character)

character is the ASCII “end of medium” control character (code 25).

<enq> (-- character)

character is the ASCII “enquiry” control character (code 5).

<eot> (-- character)

character is the ASCII “end of transmission” control character (code 4).

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

StrongForth.f 3.1 Glossary: assembler 39

<esc> (-- character)

character is the ASCII “escape” control character (code 27).

<etb> (-- character)

character is the ASCII “end of transmission block” control character (code 23).

<etx> (-- character)

character is the ASCII “end of text” control character (code 3).

<ff> (-- character)

character is the ASCII “form feed” control character (code 12).

<fs> (-- character)

character is the ASCII “file separator” control character (code 28).

<gs> (-- character)

character is the ASCII “group separator” control character (code 29).

<ht> (-- character)

character is the ASCII “horizonal tabulator” control character (code 9).

<lf> (-- character)

character is the ASCII “line feed” control character (code 10).

<nak> (-- character)

character is the ASCII “negative acknowledge” control character (code 21).

<nul> (-- character)

character is the ASCII “null” control character (code 0).

<rs> (-- character)

character is the ASCII “record separator” control character (code 30).

<si> (-- character)

character is the ASCII “shift in” control character (code 15).

<so> (-- character)

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

StrongForth.f 3.1 Glossary: assembler 40

character is the ASCII “shift out” control character (code 14).

<soh> (-- character)

character is the ASCII “start of header” control character (code 1).

<stx> (-- character)

character is the ASCII “start of text” control character (code 2).

<sub> (-- character)

character is the ASCII “substitute” control character (code 26).

<syn> (-- character)

character is the ASCII “synchronous idle” control character (code 22).

<us> (-- character)

character is the ASCII “unit separator” control character (code 31).

<vt> (-- character)

character is the ASCII “vertical tabulator” control character (code 11).

= (double 1st -- flag)

flag is true if and only if double is bit-by-bit identical with 1st.

= (float 1st -- flag)

flag is true if and only if float is equal to 1st.

= (single 1st -- flag)

flag is true if and only if single is bit-by-bit identical with 1st.

> (address 1st -- flag)

flag is true if and only if address is greater than 1st.

> (float 1st -- flag)

flag is true if and only if float is greater than 1st.

> (integer 1st -- flag)

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

StrongForth.f 3.1 Glossary: assembler 41

flag is true if and only if integer is greater than 1st. integer is assumed to be an
unsigned numeric value.

> (integer-double 1st -- flag)

flag is true if and only if integer-double is greater than 1st. integer-double is
assumed to be an unsigned numeric value.

> (signed 1st -- flag)

flag is true if and only if signed is greater than 1st.

> (signed-double 1st -- flag)

flag is true if and only if signed-double is greater than 1st.

>= (address 1st -- flag)

flag is true if and only if address is greater than or equal to 1st.

>= (float 1st -- flag)

flag is true if and only if float is greater than or equal to 1st.

>= (integer 1st -- flag)

flag is true if and only if integer is greater than or equal to 1st. integer is assumed to be
an unsigned numeric value.

>= (integer-double 1st -- flag)

flag is true if and only if integer-double is greater than or equal to 1st. integer-
double is assumed to be an unsigned numeric value.

>= (signed 1st -- flag)

flag is true if and only if signed is greater than or equal to 1st.

>= (signed-double 1st -- flag)

flag is true if and only if signed-double is greater than or equal to 1st.

>attributes (data-type -- data-type-attributes)

data-type-attributes is the data type attributes of data-type.

>body (definition -- address)

StrongForth.f 3.1 Glossary: assembler 42

If definition is a created definition, address is the address of its data field. Otherwise,
address is null.

>body is a virtual method of the definition class.

>class-attributes (data-type -- class-attributes)

If data-type is directly or indirectly derived from object, class-attributes is the class
attributes of data-type. Otherwise, an exception is thrown and class-attributes is null.

>code (token -- address)

address is the address of the first machine code instruction of the definition associated with
token.

>context (vocabulary --)

Remove vocabulary from both the context vocabulary list and the hidden vocabulary list. Make
vocabulary the head of the context vocabulary list. An ambiguous condition exists if
vocabulary was not included in one of the two vocabulary lists before >context is executed.

>data-type (data-type-attributes -- data-type)

data-type is the data type associated with data-type-attributes. No additional
attributes are set in data-type.

>definition (data-type -- created-definition)

created-definition is the definition associated with data-type, that is used within stack
diagrams. An exception is thrown if no such definition is found.

>definition (vocabulary -- created-definition)

created-definition is the definition associated with vocabulary, that is used to move a
vocabulary the top of the context vocabulary list. An exception is thrown if no such definition is
found.

>dt (address -> data-type --)

In interpretation state (state is false), append the compound data type stored at address ->
data-type to the interpreter data type heap. In compilation state (state is true), append the
compound data type stored at address -> data-type to the compiler data type heap. An
exception is thrown if the respective data type heap overflows.

>dt (data-type --)

In interpretation state (state is false), append the basic data type data-type to the
interpreter data type heap. In compilation state (state is true), append the basic data type
data-type to the compiler data type heap. An exception is thrown if the respective data type
heap overflows.

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 43

>float (caddress -> character unsigned -- float flag)

An attempt is made to convert the string specified by caddress -> character unsigned
to internal floating-point representation. If the string represents a valid floating-point number
according to the syntax below, float is its value and flag is true. If the string does not
represent a valid floating-point number, float is undefined and flag is false.

A string of blanks is being treated as a special case representing zero.

convertible string := <significand>[<exponent>]
<significand> := [<sign>]{<digits>[.<digits0>] | .<digits>}
<exponent> := <marker><digits0>
<marker> := {<e-form> | <sign>}
<e-form> := <e-char>[<sign>]
<sign> := { + | - }
<e-char> := { D | d | E | e }
<digits> := <digit><digits0>
<digits0> := <digit>*
<digit> := { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }

>in (-- address -> unsigned)

address -> unsigned is the address of a cell containing the offset in characters from the
start of the input buffer to the start of the parse area of the default input stream.

>in (input-stream -- address -> unsigned)

address -> unsigned is the address of a cell containing the offset in characters from the
start of the input buffer to the start of the parse area of input-stream.

>number (integer-double caddress -> character unsigned -- 1st 2nd
4 th)

1st is the unsigned result of converting the characters within the string specified by caddress
-> character unsigned into digits, and adding each into integer-double after
multiplying integer-double by the number-conversion radix in base. Conversion continues
left-to-right until a character that is not convertible, including any + or -, is encountered, or the
string is entirely converted. 2nd is the location of the first unconverted character or the first
character past the end of the string if the string was entirely converted. 4 th is the number of
unconverted characters in the string.

>r (-- r-index) compile-only

Compilation: Create a local with the name r@. Append the runtime semantics given below to the
current definition. r-index is null.

Runtime: (single --) or (double --) or (float --)

Move single or double or float to the return stack.

>sign (character -- signed)

strong.sf

StrongForth.f 3.1 Glossary: assembler 44

signed is +1 if character is equal to +, and -1 if character is equal to -. For all other
values of character, signed is zero.

>structure-attributes (data-type -- structure-attributes)

If data-type is directly or indirectly derived from structure, structure-attributes
is the structure attributes of data-type. Otherwise, an exception is thrown and structure-
attributes is null.

>token (definition data-type -- token)

An exception is thrown if data-type is not a qualified token. token is the execution token of
definition. An exception is thrown if the stack diagram of definition does not match the
stack diagram represented by the qualified token data-type according to the rules of the
StrongForth data type system.

>token (definition deferred-definition -- token)

token is the execution token of definition. An exception is thrown if the stack diagram of
definition does not match the stack diagram of deferred-definition according to the
rules of the StrongForth data type system.

>token (definition created-definition -- token)

token is the execution token of definition. An exception is thrown if the stack diagram of
definition does not match the stack diagram of the virtual method created-definition,
with the last input parameter replaced with the data type of the class that is currently being defined,
according to the rules of the StrongForth data type system.

? (--) immediate

Interpretation: (address -> x --)

Send x to the default output stream by using a suitable version of .. x can be a single-cell or a
double-cell item or a floating-point number.

Compilation: Append the runtime semantics given below to the current definition.

Runtime: (address -> x --)

Send x to the default output stream by using a suitable version of .. x can be a single-cell or a
double-cell item or a floating-point number.

?block (unsigned -- 1st)

1st is unsigned. An exception is thrown if unsigned is not a valid block number between 1
and #blocks.

?byte (integer -- 1st)

1st is integer. An exception is thrown if integer cannot be represented as an unsigned byte-
size integer, i. e., its value is not between 0 and 255.

struct.sf

strong.sf

strong.sf

strong.sf

strong.sf

block.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 45

?byte (signed -- 1st)

1st is signed. An exception is thrown if signed cannot be represented as a signed byte-size
integer, i. e., its value is not between -128 and +127.

?congruent (definition --)

In interpretation state, compare the interpreter data type heap with the output parameters of
definition. In compilation state, compare the compiler data type heap with the output
parameters of definition. An exception is thrown if the data types do not exactly match.
?congruent resolves data type references to the input parameters of definition.

?create-vtable (object-size --)

If the class that is currently being defined does not yet have a virtual method table, create a virtual
method table in the data space and initialize it with object-size and the tokens of the parent
class plus unassigned tokens for newly added virtual methods. Otherwise, just update the
existing virtual method table with object-size.

?created-definition (definition -- created-definition)

created-definition is definition. An exception is thrown if definition was not
defined by create.

?data-type (caddress -> character unsigned -- data-type)

Search all vocabularies for a definition with the name given by the string caddress ->
character unsigned that was created by procreates. If such a definition is found, return
the data type the definition is associated with as data-type. If no data type with this name is
found, an exception is thrown and data-type is null.

?data-type (definition -- data-type)

If definition was created by procreates, data-type is the data type it is associated with.
Otherwise, an exception is thrown and data-type is null.

?do (-- c:sys do-destination) compile-only

Compilation: Create and initialize c:sys and do-destination. Save a copy of the compiler
data type heap. Rename the loop index i into j, if it already exists, and define a new local i as
loop index. Append the runtime semantics given below to the current definition. The semantics are
incomplete until resolved by a consumer of c:sys and do-destination such as loop and
+loop.

Runtime: (integer 1st --) or (address 1st --)

If the limit integer or address is equal to the index 1st, branch to the location given by the
consumer of c:sys and do-destination. Otherwise initialize the loop control parameters
with limit integer or address and index 1st, and continue execution.

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 46

?loop (-- local-definition)

local-definition is the loop index of the innermost do loop. An exception is thrown if
?loop is executed in interpretation state, if no local with name i exists or if this local has no
enclosing do loop.

?negate (float signed -- 1st)

If signed is negative, change the sign of float, giving 1st.

?negate (integer signed -- 1st)

If signed is negative, 1st is the arithmetic inverse of integer. Otherwise, 1st is equal to
integer.

?negate (integer-double signed -- 1st)

If signed is negative, 1st is the arithmetic inverse of integer-double. Otherwise, 1st is
equal to integer-double.

?parse-byte ("xx" -- character)

Parse two hexadecimal digits xx and return the resulting two-digit ASCII code as character. If
the parse area does not contain at least two characters or one or both of these characters is no
hexadecimal digit, an exception is thrown and character is undefined.

?parse-char ("c" -- character)

Parse c and return it as character. If the parse area is empty, an exception is thrown and
character is null.

?qualified-token (data-type -- definition)

definition is a definition with the name execute that executes a qualified token with data
type data-type. An exception is thrown if no such definition exists.

?range (flag --)

An exception is thrown if flag is false.

?single (integer-double -- 1st)

1st is integer-double. An exception is thrown if integer-double cannot be represented
as an unsigned single-cell integer, i. e., its value is not between 0 and max-unsigned.

?single (signed-double -- 1st)

1st is signed-double. An exception is thrown if signed-double cannot be represented as
a signed single-cell integer, i. e., its value is not between max-signed negate 1- and max-
signed.

strong.sf

float.sf

escape.sf

escape.sf

strong.sf

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 47

?stack-diagram (stack-diagram --)

Throws an exception if stack-diagram is incomplete. A stack diagram is incomplete, if it does
not contain -- or if it ends with ->.

?to (definition --)

In interpretation state, check if the compound data type on top of the interpreter data type heap
matches the output parameter of definition. In compilation state, check if the compound data
type on top of the compiler data type heap matches the output parameter of definition. An
exception is thrown if the check fails. An ambiguous condition exists if definition is not either
a value definition or a locals definition, which both have only one output parameter.

?value-definition (caddress -> character unsigned --
value-definition)

Search all vocabularies for an instance of class value-definition with the name given by the
string caddress -> character unsigned. If such a definition is found, return it as
value-definition. An exception is thrown if no instance of class value-definition
with this name is found, and value-definition is null.

@ (address -> double -- 2nd)

2nd is the double-cell item stored at address -> double.

@ (address -> float -- 2nd)

2nd is the floating-point number stored at address -> float.

@ (address -> single -- 2nd)

2nd is the single-cell item stored at address -> single.

@ (caddress -> flag -- 2nd)

2nd is the flag stored at caddress -> flag. Since the flag is assumed to have character size,
while 2nd has cell size, it is extended to either false or true.

@ (caddress -> signed -- 2nd)

2nd is the signed number stored at caddress -> signed. Since the number is assumed to
have the character size, while 2nd has cell size, its value is sign extended.

@ (caddress -> single -- 2nd)

2nd is the item stored at caddress -> single. Since the item is assumed to have character
size, while 2nd has cell size, its value is extended with leading zero bits.

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 48

@ (dfaddress -> float -- 2nd)

2nd is the double-precision floating-point number stored at dfaddress -> float.

@ (sfaddress -> float -- 2nd)

2nd is the single-precision floating-point number stored at sfaddress -> float.

abort (--)

Throw an exception with code -1.

abort" ("ccc<delimiter>" --) compile-only

Parse ccc delimited by a quote ("). Append the runtime semantics given below to the current
definition.

Runtime: (single --)

If single is not equal to zero, copy the string ccc to line, fill the remainder of line with
spaces and throw an exception with code -2.

abs (float -- 1st)

1st is the absolute value of float.

abs (integer -- 1st)

1st is the absolute value of integer. integer is assumed to be a signed numeric value.

abs (integer-double -- 1st)

1st is the absolute value of integer-double. integer-double is assumed to be a signed
numeric value.

accept (caddress -> character integer -- 3rd)

Receive a character string of at most integer characters at caddress -> character from
the user input device. Send graphic characters to the user output device as they are received. The
usual editing functions that the system performs in order to construct the character string
(backspace etc.), might be used.

Input terminates when a carriage return character is received. When input terminates, nothing is
appended to the character string.

3rd is the length of the character string stored at caddress -> character.

accept is a deferred word.

access (object-size "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Find name. Add the word list that
combines the private and protected vocabularies of the class name to the list of context

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 49

vocabularies. An exception is thrown if name is not the name of a class the class currently being
defined is a friend to.

object-size is a dummy parameter that ensures that access is always used within the body
of a class definition. 1st is equal to object-size.

acos (float -- 1st)

1st is the principal radian angle whose cosine is float. An ambiguous condition exists if the
absolute value of float is greater than one.

acosh (float -- 1st)

1st is the floating-point value whose hyperbolic cosine is float. An ambiguous condition exists
if float is less than one.

action-of ("<spaces>name" --) compile-only

Compilation: Skip leading space delimiters. Parse name delimited by a space. Find a deferred
definition with the name name. Append the runtime semantics given below to the current
definition. An exception is thrown if a deferred definition with the name name does not exist.

Runtime: (-- token)

token is the execution token that the deferred definition name is set to execute.

action-of ("<spaces>name" -- token)

Skip leading space delimiters. Parse name delimited by a space. Find a deferred definition with the
name name. token is the execution token that the deferred definition name is set to execute. An
exception is thrown if a deferred definition with the name name does not exist.

address (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type address.

address-unit-bits (-- unsigned)

unsigned is 8, the number of bits in each address unit.

again (c:sys destination --) compile-only

Compilation: Append the runtime semantics given below to the current definition, resolving the
backward reference c:sys. Delete destination. Lock the compiler data type heap. An
exception is thrown if the contents of the compiler data type heap do not exactly match the copy
that was saved when destination was created.

Runtime: Continue execution at the location specified by c:sys. If no other control flow words
are used, any program code after again will never be executed.

ahead (-- c:sys origin) compile-only

strong.sf

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 50

Compilation: Put a new unresolved forward reference c:sys onto the stack and save a copy of the
compiler data type heap as origin. Append the runtime semantics given below to the current
definition. Lock the compiler data type heap. The semantics are incomplete until c:sys is
resolved.

Runtime: Continue execution at the location specified by the resolution of c:sys. If no other
control flow words are used, the program code immediately following ahead will never be
executed.

alias (definition "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the same stack diagram and execution semantics as definition. An ambiguous condition exists
if alias is executed in compilation state.

alias is typically used in the form ' old-name alias name to define an alias name for an
existing definition.

align (--)

If the first unused address of the data space is not cell aligned, reserve the required minimum
number of address units to make it cell aligned.

aligned (address -- 1st)

1st is the lowest cell aligned address greater than or equal to address.

aligned (unsigned unsigned -- 1st)

1st is the lowest unsigned number greater than or equal to the first unsigned, that is a multiple
of the second unsigned.

allocate (unsigned -- address)

Allocate unsigned address units of contiguous dynamic memory space. The initial content of the
allocated memory space is undefined. If the allocation succeeds, address is the aligned starting
address of the allocated memory space. An exception is thrown if the operation fails.

allocate-counted-string (caddress -> character unsigned -- 1st)

Allocate unsigned plus 1 characters of dynamic memory. Copy the character string caddress
-> character unsigned as a counted string in the allocated memory space. 1st is the
address of the counted string.

allot (integer --)

If integer is greater than zero, reserve integer address units of the data space. If integer is
less than zero, release |integer| address units of the data space. If integer is zero, leave the
data space unchanged.

strong.sf

strext.sf

StrongForth.f 3.1 Glossary: assembler 51

If the first unused address of the data space is cell aligned and integer is a multiple of cell size
in address units prior to execution of allot, it will remain cell aligned when allot finishes
execution.

If the first unused address of the data space is character aligned and integer is a multiple of
character size in address units prior to execution of allot, it will remain character aligned when
allot finishes execution.

alog (float -- 1st)

Raise ten to the power float, giving 1st.

alpha-numeric (--)

Set the number-conversion radix to 36 (alpha-numeric).

also (--)

In StrongForth, this definition has no semantics.

ancestor? (data-type data-type -- flag)

flag is true if and only if the second data-type is equal to the first data-type, or if the
second data-type is directly or indirectly derived from the first data-type.

and (data-type data-type -- 1st)

1st is the first data-type with attributes that are the bit-by-bit logical and of the attributes of
both parameters data-type.

and (object-size object-size object-size -- 1st 2nd 3rd)

Terminate a block of a union of members within a class definition, and start a new one. 1st and
3rd are equal to the first object-size. 2nd is the maximum of the second and the third
object-size.

and (single logical -- 1st)

1st is the bit-by-bit logical and of single and logical.

asin (float -- 1st)

1st is the principal radian angle whose sine is float. An ambiguous condition exists if the
absolute value of float is greater than one.

asinh (float -- 1st)

1st is the floating-point value whose hyperbolic sine is float. An ambiguous condition exists if
float is less than zero.

strong.sf

order.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 52

assembler (--) immediate

Remove the assembler vocabulary from both the context vocabulary list and the hidden
vocabulary list. Make the assembler vocabulary the head of the context vocabulary list. An
ambiguous condition exists if the assembler vocabulary was not included in one of the two
vocabulary lists before assembler is executed.

assign (double double-definition --)

Assigns the value of double to double-definition. double-definition will from
now on compile the value of double as a literal.

assign (float float-definition --)

Assigns the value of float to float-definition. float-definition will from now on
compile the value of float as a literal.

assign (single single-definition --)

Assigns the value of single to single-definition. single-definition will from
now on compile the value of single as a literal.

at-xy (unsigned unsigned --)

Perform steps so that the next character displayed will appear in column unsigned (first input
parameter), row unsigned (second input parameter) of the user output device, the upper left
corner of which is column zero, row zero. An ambiguous condition exists if the operation cannot be
performed on the user output device with the specified parameters.

atan (float -- 1st)

1st is the principal radian angle whose tangent is float.

atan2 (float float -- 1st)

1st is the radian angle whose tangent is the first float divided by the second float. An
ambiguous condition exists if both parameters float are zero.

atanh (float -- 1st)

1st is the floating-point value whose hyperbolic tangent is float. An ambiguous condition
exists if the absolute value of float is greater than one.

attributes! (logical definition --)

Set the attributes given by logical within definition. Note that there’s no direct way to
clear attributes of definition once they have been set.

attributes? (data-type data-type -- flag)

asm.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 53

flag is true if and only if at least one of the attributes of the first data-type is set in the
second data-type as well.

attributes? (logical definition -- flag)

flag is true if and only if at least one of the attributes given by logical is set within
definition.

base (-- address -> unsigned)

address -> unsigned is the address of the current number-conversion radix (2...36).

begin (-- c:sys destination) compile-only

Compilation: Create and initialize c:sys and save a copy of the compiler data type heap as
destination. Append the runtime semantics given below to the current definition.

Runtime: Continue execution.

begin-compilation (--)

Enter compilation state. Empty and unlock the compiler data type heap. Set #locals to zero.

begin-loop (local-definition -- do-destination)

Create and initialize do-destination and save a copy of the compiler data type heap. Make
local-definition the loop index by assigning do-destination as the destination of the
associated do loop.

begin-structure ("<spaces>name" -- structure-attributes object-
size)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. The definition identifies a new data type that is a direct
subtype of structure. Assign the attributes of the new data type to this-attributes.
structure-attributes is the data type attributes associated with the new data type.
object-size is zero.

name Execution: (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with the new data type.

bell (--)

Produce a short sound.

bin (fam -- 1st)

Modify fam to additionally select a “binary” file access method, and return it as 1st.

binary (--)

strong.sf

strong.sf

struct.sf

StrongForth.f 3.1 Glossary: assembler 54

Set the number-conversion radix to 2 (binary).

bit (unsigned -- logical)

The bit at position unsigned of logical is 1. All other bits of logical are 0.

bl (-- character)

character is the space character.

blank (caddress -> character unsigned --)

If unsigned is greater than zero, store the character value for space in unsigned consecutive
character positions beginning at caddress -> character.

blk (block-input-stream -- address -> unsigned)

address -> unsigned is the address of a cell containing the number of the block being
interpreted.

blk is a member of the block-input-stream class.

blk# (-- address -> unsigned)

address -> unsigned is the address of a cell containing the number of the block that is
stored in the block buffer, or zero if the block buffer is currently unused.

block (unsigned -- caddress -> character)

If the block buffer is unassigned, transfer block unsigned from the block file to the block buffer.

If block unsigned is not already in the block buffer, and the block buffer is assigned but has not
been modified, transfer block unsigned from the block file to the block buffer.

If block unsigned is not already in the block buffer, and the block buffer is assigned and has
been modified, transfer the block to the block file and then transfer block unsigned from the
block file to the block buffer.

Assign block unsigned to the block buffer. caddress -> character is the address of the
block buffer. An exception is thrown if unsigned is not a valid block number.

block-buffer (-- caddress -> character)

caddress -> character is the address of a single buffer for c/b characters, called block
buffer. This buffer is always used when transferring a block from or to the block file.

block-file (-- file)

file is the file containing all blocks.

block-input-stream (stack-diagram -- 1st)

strong.sf

strong.sf

block.sf

block.sf

block.sf

block.sf

block.sf

block.sf

StrongForth.f 3.1 Glossary: assembler 55

When used in a stack diagram, specifies an input or output parameter with data type block-
input-stream.

block-input-stream (unsigned block-input-stream -- 2nd)

Initialize block-input-stream by erasing all members. Make unsigned the number of the
block to be interpreted. Transfer block unsigned from the block file to the block buffer. Make
the block buffer the input buffer. 2nd is block-input-stream. An exception is thrown if
unsigned is not a valid block number.

block-input-stream is a constructor of the block-input-stream class.

body-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

flag is true if and only if the value of single is the data field of definition.

Note: Provide search-criterion to search in order to find a created definition with a
specific data field.

buffer (unsigned -- caddress -> character)

If block unsigned is not already in the block buffer, and the block buffer is assigned and has
been modified, transfer the block to the block file.

Assign block unsigned to the block buffer. caddress -> character is the address of the
block buffer. An exception is thrown if unsigned is not a valid block number.

buffer: (unsigned "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. Allocate unsigned
address units in the definition's data field.

name Execution: Execute the definition name. The default execution semantics of the new
definition is placing the address of its data field onto the stack.

Note that the stack diagram of the new definition has to be explicitly specified. The execution
semantics may be extended by does> or ;code.

bye (--)

Terminate StrongForth return control to the host system.

byte? (integer -- flag)

flag is true if and only if integer can be represented as an unsigned byte-size integer, i. e.,
its value is between 0 and 255.

byte? (signed -- flag)

block.sf

strong.sf

block.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 56

flag is true if and only if signed can be represented as a signed byte-size integer, i. e., its
value is between -128 and +127.

c, (single --)

Reserve space for one character in the data space and store single truncated to character size in
it. If the data space is character aligned when c, begins execution, it will remain character aligned
when c, finishes execution. An ambiguous condition exists if the first unused address of the data
space is not character aligned prior to execution of c,. An exception is thrown if the data space
overflows.

c/b (-- unsigned)

unsigned is 1024, the number of characters per block.

c/l (-- unsigned)

unsigned is 64, the number of characters in a line of a block.

c:sys (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type c:sys.

caddress (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type caddress.

callocate (unsigned -- caddress)

Allocate unsigned address units of contiguous dynamic memory space. The initial content of the
allocated memory space is undefined. If the allocation succeeds, caddress is the aligned starting
address of the allocated memory space. An exception is thrown if the operation fails.

case (-- c:sys endof-origin of-origin) compile-only

Compilation: Mark the start of a case ... of ... endof ... endcase structure by
putting c: sys, endof-origin and of-origin onto the stack. Save a copy of the compiler
data type heap. Append the runtime semantics given below to the current definition.

Runtime: Continue execution.

cast (x "<spaces>name" -– y) immediate

Skip leading space delimiters. Parse name delimited by a space. An exception is thrown if name is
not the name of a data type.

Convert x to y, where x is any data type and y is the data type identified by name. If x and y have
the same size, the actual bit image is not changed. If x and y have different sizes, cast uses one
of the following conversion words to adjust the size and bit image of y: s>d, s>f, d>s, d>f, f>s
or f>d. These are conversions applied to different combinations of source and destination data
types:

block.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 57

x↓ y→ single double float

single
double
float

noop
d>s
f>s

s>d
noop
f>d

s>f
d>f
noop

catch ("<spaces>name" --) compile-only

Compilation: Skip leading space delimiters. Parse name delimited by a space. Search the context
vocabularies for a definition with the name name, whose input parameters match the compiler data
type heap according to the rules of the StrongForth data type system. An exception is thrown if no
matching definition is found. Append the runtime semantics given below to the current definition.

Runtime: Create and initialize a new exception frame. Execute name. Obtain the error code from
the current exception frame. Delete the current exception frame.

cells (integer -- 1st)

1st is the size in address units of integer cells.

char ("<spaces>name" -- character)

Skip leading space delimiters. Parse name delimited by a space. character is the value of
name's first character. If the length of the parsed area is zero, character is the space character.

character (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type character.

chars (integer -- 1st)

1st is the size in address units of integer characters.

chere (-- caddress)

caddress is the first unused address of the data space.

class ("<spaces>name" -- vocabulary object-size)

Skip leading space delimiters. Parse name delimited by a space. Find the data type associated with
name and assign its data type attributes to this-attributes. An exception is thrown if name
is not a class, or if the parent of name has not yet been defined. Initialize the virtual method table
length, the protected vocabulary and the private vocabulary. vocabulary is the current
compilation vocabulary. object-size is the size in bits of objects of the parent class, or zero if
an exception is thrown.

class starts a class definition.

class-attributes (data-type unsigned class-attributes -- 3rd)

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 58

Initialize class-attributes by erasing all members. Store the attributes of data-type as
the parent of the class associated with class-attributes. Store unsigned as the size in
address unites of the class associated with class-attributes.

class-attributes is the constructor of the class-attributes class.

class-attributes (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type class-
attributes.

close (file --)

Close the file identified by file.

cmember (object-size single "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to character size, plus the number of bits in one character.

name is referred to as a class member. cmember reserves a character-size class member of the
same data type as single in the class that is currently being defined.

Execution: (x -- caddress -> y)

caddress -> y is the address of a character-size class member of the object x, that were
reserved at the time name was created. y is the actual data type that was provided to cmember as
single.

cmembers (object-size single unsigned "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to character size, plus unsigned times the number of bits in one
character.

name is referred to as a class member. cmembers reserves unsigned characters for an array of
unsigned character-size class members of the same data type as single in the class that is
currently being defined.

Execution: (x -- caddress -> y)

caddress -> y is the address of an array of unsigned character-size class members of the
object x, that were reserved at the time name was created. y is the actual data type that was
provided to cmembers as single.

cmove (caddress 1st unsigned --)

If unsigned is greater than zero, copy unsigned consecutive characters starting at caddress
to that starting at 1st, proceeding character-by-character from lower addresses to higher
addresses.

cmove> (caddress 1st unsigned --)

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 59

If unsigned is greater than zero, copy unsigned consecutive characters starting at caddress
to that starting at 1st, proceeding character-by-character from higher addresses to lower
addresses.

code ("<spaces>name" – code-definition)

Skip leading space delimiters. Parse name delimited by a space. Create a code definition for name
with the execution semantics defined below, and make it the latest definition. The runtime code of
the code definition begins at the first unused address of the data space. An ambiguous condition
exists if code is executed in compilation state.

Subsequent words in the parse area typically represent source code in assembly language,
generating machine code. The new code definition is not automatically added to the current
compilation word list, This can be achieved by executing endcode after the last machine code
instruction.

name Execution: Execute the definition name.

Note that the new code definition does have no stack effects by default. Stack effects have to be
specified separately if they are intended. By specifying a stack diagram (... -- ...)
immediately following code and the definition name, the new definition is modified to incorporate
stack effects.

code-definition (caddress -> character unsigned code-definition -
- 4 th)

Initialize code-definition by erasing all members. Establish a link to the previous definition
in the current vocabulary and update latest. Links will be removed when code-definition
is deleted. The first unused address of the data space is the address of the first machine code
instruction of code-definition. Assign code-definition a name given by the character
string caddress -> character unsigned and return it as 4 th.

code-definition is a constructor of the code-definition class.

code-definition (code-definition -- 1st)

Initialize code-definition by erasing all members. Establish a link to the previous definition
in the current vocabulary and update latest. Links will be removed when code-definition
is deleted. The first unused address of the data space is the address of the first machine code
instruction of code-definition. Return code-definition as 1st.

code-definition is a constructor of the code-definition class.

code-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type code-
definition.

colon-definition (caddress -> character unsigned colon-definition
– c:sys 4 th)

Produce c:sys. Initialize colon-definition by erasing all members. Establish a link to the
previous definition in the current vocabulary and update latest. Links will be removed when
colon-definition is deleted. The execution semantics of colon-definition will be

asm.sf

StrongForth.f 3.1 Glossary: assembler 60

determined by the words compiled into the body. Assign colon-definition a name given by
the character string caddress -> character unsigned and return it as 4 th.

colon-definition is a constructor of the colon-definition class.

colon-definition (colon-definition -- 1st)

Produce c:sys. Initialize colon-definition by erasing all members. Establish a link to the
previous definition in the current vocabulary and return colon-definition as 1st. Links will
be removed when colon-definition is deleted. The execution semantics of colon-
definition will be determined by the words compiled into the body.

colon-definition is a constructor of the colon-definition class.

colon-definition (created-definition token colon-definition --
3rd)

Initialize colon-definition by erasing all members. Copy the attributes of created-
definition. Store token as the execution token of colon-definition. Return colon-
definition as 3rd.

colon-definition is a constructor of the colon-definition class.

colon-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type colon-
definition.

compare (caddress -> character unsigned 1st 3rd -- signed)

Compare the string specified by caddress -> character unsigned to the string specified
by 1st 3rd. The strings are compared, beginning at the given addresses, character by character,
up to the length of the shorter string or until a difference is found.

If the two strings are identical, signed is zero.

If the two strings are identical up to the length of the shorter string, signed is -1 if unsigned is
less than 3rd, and +1 otherwise.

If the two strings are not identical up to the length of the shorter string, signed is -1 if the first
non-matching character in the string specified by caddress -> character unsigned has
a lesser numeric value than the corresponding character in the string specified by 1st 3rd, and
+1 otherwise.

compile, (definition --)

In interpretation state, apply the stack effect of definition to the interpreter data type heap and
execute the semantics of definition.

In compilations state, apply the stack effect of definition to the compiler data type heap and
append the semantics of definition to the runtime semantics of the current definition.

compile-only (--)

StrongForth.f 3.1 Glossary: assembler 61

Make the latest definition a compile-only word. The interpreter finds this definition only if in
compilation state, and executes it like an immediate word.

constant (double "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. name is referred to as a constant.

Execution: (-- x)

Place x on the stack. x has the same data type as was supplied to constant as double.

constant (float "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. name is referred to as a constant.

Execution: (-- x)

Place x on the stack. x has the same data type as was supplied to constant as float.

constant (single "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. name is referred to as a constant.

Execution: (-- x)

Place x on the stack. x has the same data type as was supplied to constant as single.

constant-definition (double caddress -> character unsigned
constant-definition -- 5 th)

Initialize constant-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when
constant-definition is deleted. Assign constant-definition the execution
semantics defined below. Assign constant-definition a name given by the character string
caddress -> character unsigned and return it as 5 th.

Execution: (-- x)

Place a double-cell value x on the stack.

constant-definition is a constructor of the constant-definition class.

constant-definition (float caddress -> character unsigned
constant-definition -- 5 th)

Initialize constant-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when
constant-definition is deleted. Assign constant-definition the execution
semantics defined below. Assign constant-definition a name given by the character string
caddress -> character unsigned and return it as 5 th.

Execution: (-- x)

Place floating-point number x on the stack.

strong.sf

float.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 62

constant-definition is a constructor of the constant-definition class.

constant-definition (single caddress -> character unsigned
constant-definition -- 5 th)

Initialize constant-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when
constant-definition is deleted. Assign constant-definition the execution
semantics defined below. Assign constant-definition a name given by the character string
caddress -> character unsigned and return it as 5 th.

Execution: (-- x)

Place a single-cell value x on the stack.

constant-definition is a constructor of the constant-definition class.

constant-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type constant-
definition.

constant-definition (token caddress -> character unsigned
constant-definition -- 5 th)

Initialize constant-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when
constant-definition is deleted. Assign constant-definition the execution
semantics specified by token. Assign constant-definition a name given by the character
string caddress -> character unsigned and return it as 5 th.

constant-definition is a constructor of the constant-definition class.

context (-- address -> vocabulary)

address -> vocabulary is the address of an object indicating the vocabulary that is
searched first by search-context and all words using it. This vocabulary is actually the head
of a linked list of vocabularies that are searched in the given order. The list of vocabularies is
referred to as the context vocabulary list.

control-flow (control-flow -- 1st)

Initialize control-flow by erasing all members. If the compiler data type heap is not locked,
save a copy of the present compiler data type heap.

control-flow is the constructor of the control-flow class.

control-flow (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type control-
flow.

StrongForth.f 3.1 Glossary: assembler 63

copy (object 1st --)

Copy all members of object to 1st. If object and 1st have different memory sizes, the
minimum number of members are copied and the remaining members are not copied or remain
unchanged.

cos (float -- 1st)

1st is the cosine of the radian angle float.

cosh (float -- 1st)

1st is the hyperbolic cosine of float.

count (caddress -> character -- 1st unsigned)

Return the character string specification for the counted string stored at caddress ->
character. 1st is the address of the first character after caddress -> character.
unsigned is the numeric value of the character at caddress -> character, which is the
length in characters of the string at 1st.

cr (--)

Send a carriage return character followed by a line feed character to the default output stream.

create ("<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. create does not
allocate memory in the definition's data field.

name Execution: Execute the definition name. The default execution semantics of the new
definition is placing the address of its data field onto the stack.

Note that the stack diagram of the new definition has to be explicitly specified. The execution
semantics may be extended by does> or ;code.

create (caddress -> character unsigned fam -- file)

Create a file with the name given by the character string caddress -> character
unsigned, and open it as file with file access method fam. If a file with the same name
already exists, recreate it as an empty file. An exception is thrown if r/o is specified as the file
access method or if the operation fails.

create-index (-- local-definition)

Search the locals vocabulary for a local with the name i. If it exists, rename it to j. Create a new
local with the name i in the locals vocabulary.

created-definition (caddress -> character unsigned created-
definition -- 4 th)

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 64

Initialize created-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when created-
definition is deleted. Assign created-definition a name given by the character string
caddress -> character unsigned and return it as 4 th.

created-definition is a constructor of the created-definition class.

created-definition (created-definition -- 1st)

Initialize created-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when created-
definition is deleted. Return created-definition as 1st.

created-definition is a constructor of the created-definition class.

created-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type created-
definition.

created-definition (token caddress -> character unsigned created-
definition -- 5 th)

Initialize created-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when created-
definition is deleted. Assign created-definition the execution semantics specified by
token. Assign created-definition a name given by the character string caddress ->
character unsigned and return it as 5 th.

created-definition is a constructor of the created-definition class.

created-definition? (address -- created-definition flag)

Search for a definition that was created with create and whose data field is equal to address.
If such a definition exist, created-definition is the definition and flag is true.
Otherwise, created-definition is null and flag is false.

created-definition? (definition -- created-definition flag)

created-definition is definition. flag is true if and only if definition was
defined by create.

ctrl ("<spaces>name" -- character)

Skip leading space delimiters. Parse name delimited by a space. character is the ASCII control
character the keyboard generates when typing name's first character while holding the CTRL key.
An exception is thrown if name's first character is not a lowercase or uppercase letter. If the length
of the parsed area is zero, character is the null character.

current (-- address -> vocabulary)

strong.sf

ascii.sf

StrongForth.f 3.1 Glossary: assembler 65

address -> vocabulary is the address of an object indicating the vocabulary to which new
definitions are added.

current-exception-frame (-- address -> exception-frame)

address -> exception-frame is the address of an object indicating the current lowest-
level exception frame.

cvariable (single "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve one character of data space and store single at
the address.

name is referred to as a variable.

Execution: (-- caddress -> x)

caddress -> x is the address of the reserved character. x has the same data type as was
supplied to cvariable as single.

cvariables (single unsigned "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve unsigned characters of data space and store
single in each of them.

name is referred to as a variable.

Execution: (-- caddress -> x)

caddress -> x is the address of the first reserved character. x has the same data type as was
supplied to cvariable as single.

d>f (double -- float)

float is the floating-point equivalent of the unsigned double number double. An ambiguous
condition exists if double cannot be precisely represented as a floating-point value.

d>f (signed-double -- float)

float is the floating-point equivalent of the signed double number signed-double. An
ambiguous condition exists if signed-double cannot be precisely represented as a floating-
point value.

d>s (double -- single)

single is the numeric equivalent of double. An ambiguous condition exists if double lies
outside the range of a single number.

d>s (integer-double -- integer)

integer is the numeric equivalent of integer-double. An ambiguous condition exists if
integer lies outside the range of a single number.

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 66

d>s (signed-double -- signed)

signed is the numeric equivalent of signed-double. An ambiguous condition exists if
signed lies outside the range of a single signed number.

d>s (unsigned-double -- unsigned)

unsigned is the numeric equivalent of unsigned-double. An ambiguous condition exists if
unsigned lies outside the range of a single unsigned number.

data-type (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type data-type.

data-type-attributes (data-type unsigned data-type-attributes --
3rd)

Initialize data-type-attributes by erasing all members. Store the attributes of data-
type as the parent of the data type associated with data-type-attributes. Store
unsigned as the size of the data type associated with data-type-attributes.

data-space-attributes is the constructor of the data-space-attributes class.

data-type-attributes (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type data-type-
attributes.

data-type? (definition -- data-type flag)

If definition was created by procreates, data-type is the data type it is associated with,
and flag is true. Otherwise, data-type is null and flag is false.

decimal (--)

Set the number-conversion radix to 10 (decimal).

default (input-stream --)

Make input-stream the present default input stream.

default (output-stream --)

Make output-stream the present default output stream.

default-input-stream (-- address -> input-stream)

address -> input-stream is the address of an object indicating the present default input
stream.

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 67

default-output-stream (-- address -> output-stream)

address -> output-stream is the address of an object indicating the present default output
stream.

defer ("<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition.

name Execution: Execute the definition that has been assigned to name by a succeeding execution
of defer! or is. name is called a deferred definition. An exception is thrown if name is
executed before it has been assigned an execution semantics by defer! or is.

Note that the new definition does have no stack effects by default. Stack effects have to be
specified separately if they are intended. By using a stack diagram phrase (... -- ...)
immediately following defer and the definition name, the new definition is modified to
incorporate stack effects.

defer! (token deferred-definition --)

Set deferred-definition to execute token. An ambiguous condition exists if token is
not for a definition defined by defer.

defer@ (deferred-definition -- token)

token is the execution token deferred-definition is set to execute.

deferred-definition (caddress -> character unsigned deferred-
definition -- 4 th)

Initialize deferred-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when
deferred-definition is deleted. Assign deferred-definition the execution
semantics defined below. Assign deferred-definition a name given by the character string
caddress -> character unsigned and return it as 4 th.

Execution: Execute the execution token that deferred-definition is set to execute. An
exception is thrown if deferred-definition has not been set to execute an execution token.

deferred-definition is a constructor of the deferred-definition class.

deferred-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type deferred-
definition.

deferred-definition (token caddress -> character unsigned
deferred-definition -- 5 th)

Initialize deferred-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when

strong.sf

StrongForth.f 3.1 Glossary: assembler 68

constant-definition is deleted. Assign deferred-definition the execution
semantics specified by token. Assign deferred-definition a name given by the character
string caddress -> character unsigned and return it as 5 th.

Execution: Execute token.

deferred-definition is a constructor of the deferred-definition class.

definition (caddress -> character unsigned definition -- 4 th)

Initialize definition by erasing all members. Establish a link to the previous definition in the
current vocabulary and update latest. Links will be removed when definition is deleted.
Assign definition a name given by the character string caddress -> character
unsigned and return it as 4 th.

definition is a constructor of the definition class.

definition (caddress -> character unsigned definition definition
-- 5 th)

Initialize the second definition by copying all members of the first definition. For the
second definition, establish a link to the previous definition in the current vocabulary and
update latest. Links will be removed when definition is deleted. Assign the second
definition a name given by the character string caddress -> character unsigned.
Clear the stack diagram of the second definition and return it as 5 th.

definition is a constructor of the definition class.

definition (definition -- 1st)

Initialize definition by erasing all members. Establish a link to the previous definition in the
current vocabulary and update latest. Links will be removed when definition is deleted.
Return definition as 1st.

definition is a constructor of the definition class.

definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type
definition.

definition (token caddress -> character unsigned definition -- 5
th)

Initialize definition by erasing all members. Establish a link to the previous definition in the
current vocabulary and update latest. Links will be removed when definition is deleted.
Assign definition the execution semantics specified by token. Assign definition a name
given by the character string caddress -> character unsigned and return it as 5 th.

definition is a constructor of the definition class.

definitions (--)

Make the current compilation vocabulary the same as the head of the context vocabulary list.

strong.sf

StrongForth.f 3.1 Glossary: assembler 69

definitions specifies that the names of subsequent definitions will be placed in the current
compilation vocabulary. Subsequent changes in the current compilation vocabulary will not affect
the vocabularies of already compiled definitions.

delete (caddress -> character unsigned --)

Delete the file with the path given by the string caddress -> character unsigned. An
exception is thrown if the operation fails.

delete (object --)

Return all dynamic memory occupied by object to the system. An ambiguous condition exists if
object was not allocated from dynamic memory.

delete is a virtual method of the object class.

delimiter (-- character)

character is the delimiter used by unescape and substitute. It is initialized with %
(percent character). Since delimiter is a value, it can be reassigned by to.

depth (-- unsigned)

unsigned is the number of single-cell values contained in the data stack before unsigned was
placed on the stack.

destination (destination -- 1st)

Initialize destination by erasing all members. If the compiler data type heap is not locked,
save a copy of the present compiler data type heap.

destination is the constructor of the destination class.

destination (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type
destination.

df, (float --)

Reserve space for a double-precision floating-point number in the data space and store float as a
double-precision floating-point number in it. If the first unused address of the data space is aligned
prior to execution of df,, it will remain aligned when df, finishes execution. An ambiguous
condition exists if the first unused address of the data space is not aligned prior to execution of
df,. An exception is thrown if the data space overflows.

dfaddress (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type dfaddress.

strext.sf

StrongForth.f 3.1 Glossary: assembler 70

dfalign (--)

If the first unused address of the default memory space is not double-precision float aligned,
reserve the required number of address units to make it double-precision float aligned.

dfaligned (address -- 1st)

1st is the lowest double-precision float aligned address greater than or equal to address.

dfallocate (unsigned -- dfaddress)

Allocate unsigned address units of contiguous dynamic memory space. The initial content of the
allocated memory space is undefined. If the allocation succeeds, dfaddress is the aligned
starting address of the allocated memory space. An exception is thrown if the operation fails.

dfhere (-- dfaddress)

dfaddress is the first unused address of the data space.

dfloats (integer -- 1st)

1st is the size in address units of integer double-precision floating-point numbers.

dfmember (object-size float "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to double-precision floating-point numbers, plus the size in bits of a
double-precision floating-point number.

name is referred to as a class member. dfmember reserves space for one double-precision
floating-point number for a class member of the same data type as float in the class that is
currently being defined.

Execution: (x -- dfaddress -> y)

dfaddress -> y is the address of the class member of the object x, that was reserved at the
time name was created. y is the actual data type that was provided to dfmember as float.

dfmembers (object-size float unsigned "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to double-precision floating-point numbers, plus unsigned times the
size in bits of a double-precision floating-point number.

name is referred to as a class member. dfmembers reserves unsigned double-precision
floating-point numbers for an array of unsigned class members of the same data type as float
in the class that is currently being defined.

Execution: (x -- dfaddress -> y)

float.sf

float.sf

float.sf

float.sf

StrongForth.f 3.1 Glossary: assembler 71

dfaddress -> y is the address of an array of unsigned class members of the object x, that
were reserved at the time name was created. y is the actual data type that was provided to
dfmember as float.

dfvariable (float "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve data space for a double-precision floating-point
number at a double-precision floating-point aligned address and store float at the address.

name is referred to as a variable.

Execution: (-- dfaddress -> x)

dfaddress -> x is the address of the double-precision floating-point number. x has the same
data type as was supplied to variable.

dfvariables (float unsigned "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve data space for unsigned double-precision
floating-point numbers at a double-precision floating-point aligned address and store float in
each of them.

name is referred to as a variable.

Execution: (-- dfaddress -> x)

dfaddress -> x is the address of the first double-precision floating-point number. x has the
same data type as was supplied to variable.

digit? (character -- unsigned flag)

Converts character into a digit unsigned. Characters 0 to 9 are converted into digits 0 to 9,
and characters a to z or A to Z are converted into digits 10 to 35, respectively. flag is true if
character is alphanumeric and the conversion result is less than the number-conversion radix
base. Otherwise flag is false and the value of unsigned is undefined.

do (-- c:sys do-destination) compile-only

Compilation: Create and initialize c:sys and save a copy of the compiler data type heap as do-
destination. Rename the loop index i into j, if it already exists, and define a new local i as
loop index. Append the runtime semantics given below to the current definition. The semantics are
incomplete until resolved by a consumer of c:sys do-destination such as loop and
+loop.

Runtime: (integer 1st --) or (address 1st --)

Initialize the loop control parameters with limit integer or address and index 1st, and
continue execution.

do-destination (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type do-
destination.

float.sf

float.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 72

does-data-type (--)

Finish the latest definition by specifying the execution semantics given below. An exception is
thrown if the latest definition was not created by create. An ambiguous condition exists if the
data field of the latest definition does not contain a data-type-attributes object.

Execution: (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with the data type associated
with the data-type-attributes object in the data field.

does-member (--)

Finish the latest definition by specifying the execution semantics given below. An exception is
thrown if the latest definition was not created by create. An ambiguous condition exists if the
latest definition was not created by member or members.

Execution: (x -- address -> y)

address -> y is the address of the class member of object x, that was reserved at the time the
object was created. The offset to the class member is stored in the data field of the latest definition.
y is the actual data type that was provided to member or members.

does-virtual (--)

Finish the latest definition by specifying the execution semantics given below. An exception is
thrown if the latest definition was not created by create. An ambiguous condition exists if the
latest definition was not created by virtual.

Execution: (... x -- ...)

Execute the definition whose token is stored in the virtual method table of object x. The virtual
method offset is s stored in the data field of the latest definition.

does-vocabulary (--)

Finish the latest definition by specifying the execution semantics given below. An exception is
thrown if the latest definition was not created by create. An ambiguous condition exists if the
data field of the latest definition does not contain a vocabulary object.

Execution: Remove the vocabulary object in the data field from both the context vocabulary list
and the hidden vocabulary list. Make the vocabulary object the head of the context vocabulary
list. An ambiguous condition exists if the vocabulary object is not included in one of the two
vocabulary lists.

does> (colon-definition -- 1st) compile-only

Compilation: Append the runtime semantics given below to the current definition. An exception is
thrown if the contents of the compiler data type heap do not exactly match the output parameters of
the current definition. Append the initiation semantics given below to the current definition.

Runtime: Specify the execution semantics of the most recent definition, referred to as name, as
given below. Return control to the calling definition.

Initiation: Place the address of name's data field on the stack.

strong.sf

StrongForth.f 3.1 Glossary: assembler 73

name Execution: Execute the portion of the definition that begins with the initiation semantics
appended by the does> which modified name.

Note that name does have no stack effects by default. Stack effects have to be specified explicitly.
By using a stack diagram phrase immediately following does>, name is modified to incorporate
stack effects. Specifying a stack diagram is mandatory, because at least the data type of name's
data field address has to be present. The data field address is always the last input parameter. The
stack effect of name is defined by the stack diagram following does>, omitting the data field
address.

double (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type double.

double-definition (caddress -> character unsigned double-
definition -- 4 th)

Initialize double-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when double-
definition is deleted. Assign double-definition a name given by the character string
caddress -> character unsigned and return it as 4 th.

double-definition is a constructor of the double-definition class.

double-definition (double-definition -- 1st)

Initialize double-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when double-
definition is deleted.

double-definition is a constructor of the double-definition class.

double-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type double-
definition.

drop (double --)

Remove double from the stack.

drop (float --)

Remove float from the stack.

drop (single --)

Remove single from the stack.

dt ("<spaces>name" -- data-type)

StrongForth.f 3.1 Glossary: assembler 74

Skip leading space delimiters. Parse name delimited by a space. Search all vocabularies for a
definition with this name that was created by procreates. If such a definition is found, return
the data type the definition is associated with as data-type. An exception is thrown if name is
not the name of a data type, and data-type is null.

dt-allot (--)

In interpretation state (state is false), reserve space for one basic data type on the interpreter
data type heap. In compilation state (state is true), reserve space for one basic data type on the
compiler data type heap. An exception is thrown if the respective data type heap overflows.

dt-allot (integer --)

In interpretation state (state is false), reserve space for integer basic data types on the
interpreter data type heap. In compilation state (state is true), reserve space for integer
basic data types on the compiler data type heap. An exception is thrown if the respective data type
heap overflows.

dt-bottom (-- address -> data-type)

In interpretation state (state is false), address -> data-type is the bottom of the
interpreter data type heap. In compilation state (state is true), address -> data-type is
the bottom of the compiler data type heap.

dt-compare (address -> data-type unsigned 1st 3rd -- flag)

Compare the unsigned basic data types stored at address -> data-type with the 3rd
basic data types stored at address 1st. flag is true if and only if 3rd is equal to unsigned
and all basic data types are one by one identical. Data type attributes other than the prefix and the
reference attributes are not considered.

dt-depth (-- unsigned)

In interpretation state (state is false), unsigned is the number of basic data types on the
interpreter data type heap. In compilation state (state is true), unsigned is the number of
basic data types on the compiler data type heap. An ambiguous condition exists if the compiler data
type heap is locked and state is true.

dt-drop (--)

In interpretation state (state is false), remove the topmost compound data type from the
interpreter data type heap. In compilation state (state is true), remove the topmost compound
data type from compiler data type heap. An exception is thrown if the respective data type heap is
empty prior to executing dt-drop.

dt-here (-- address -> data-type)

In interpretation state (state is false), address -> data-type is the first unused address
of the interpreter data type heap. In compilation state (state is true), address -> data-
type is the first unused address of the compiler data type heap.

strong.sf

StrongForth.f 3.1 Glossary: assembler 75

dt-init (--)

In interpretation state (state is false), empty the interpreter data type heap. In compilation
state (state is true), unlock and empty the compiler data type heap.

dt-length (address -> data-type -- unsigned)

unsigned is the number of basic data types the compound data type stored at address ->
data-type consist of.

dt-lock (--)

In compilation state (state is true), lock the compiler data type heap to prevent further usage
until its previous state is restored. While being locked, dt-here returns a null pointer in
compilation state.

dt-next (address -> data-type -- 1st)

1st is address -> data-type plus the size in address units of the compound data type
stored at address -> data-type.

dt-prefix (-- data-type)

data-type is a null data type with the prefix attribute. The prefix attribute is set in all but the last
basic data types of a compound data type.

dt-reference (-- data-type)

data-type is a null data type with the reference attribute. The reference attribute is set in data
types that reference previous data types within the same stack diagram.

dt-restore (--)

In interpretation state, restore a compound data type that has been dropped from the interpreter data
type heap. In compilation state, restore a compound data type that has been dropped from the
compiler data type heap.

dt-stripped (address -> data-type unsigned -- 1st 3rd)

address -> data-type is the address of a list of unsigned basic data types which may
contain compound data types linked by prefix attributes. 1st is equal to address. 3rd is
unsigned minus the number of basic data types in the last compound data type in the list. If
unsigned is zero, 3rd is zero as well.

dump (address -> double unsigned --)

Send two times unsigned consecutive cells starting at address -> double to the default
output stream, formatted as a sequence of eight-digit hexadecimal numbers. If necessary, multiple
lines are sent. Each line contains the hexadecimal starting address and the contents of up to 4
memory cells.

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 76

dump (address unsigned --)

Send unsigned consecutive cells starting at address to the default output stream, formatted as
a sequence of eight-digit hexadecimal numbers. If necessary, multiple lines are sent. Each line
contains the hexadecimal starting address and the contents of up to 4 memory cells.

dump (caddress unsigned --)

Send unsigned consecutive characters starting at caddress to the default output stream,
formatted as a sequence of two-digit hexadecimal numbers. If necessary, multiple lines are sent.
Each line contains the hexadecimal starting address and the contents of up to 16 character-size
memory cells.

dup (double -- 1st 1st)

Duplicate double.

dup (float -- 1st 1st)

Duplicate float.

dup (single -- 1st 1st)

Duplicate single.

e. (float --)

Send float with a trailing space using engineering notation to the default output stream. The
significand is greater than or equal to 1.0 and less than 1000.0, and the decimal exponent is a
multiple of three:

exponential notation := <significand><exponent>
<significand> := [-]<digits>.<digits0>
<exponent> := e[-]<digit><digit><digit>
<digits> := <digit><digits0>
<digits0> := <digit>*
<digit> := { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }

An exception is thrown if the value of the number-conversion radix base is not (decimal) 10.

ekey (-- keyboard-event)

Receive one keyboard event keyboard-event from the user input device.

ekey? (-- flag)

flag is true if and only if a keyboard event is available at the user input device. The event will
be returned by the next execution of ekey.

After ekey? returns with a value of true, subsequent executions of ekey? prior to the execution
of key, key? or ekey also return true, referring to the same event.

strong.sf

strong.sf

float.sf

StrongForth.f 3.1 Glossary: assembler 77

ekey>char (keyboard-event -- character flag)

If the keyboard event keyboard-event corresponds to a character, return its ASCII value as
character and true as flag. Otherwise, the value of character is equal to keyboard-
event and flag is false.

ekey>fkey (keyboard-event -- unsigned flag)

If the keyboard event keyboard-event corresponds to a special key, return its identification
code as unsigned and true as flag. Otherwise, the value of unsigned is equal to
keyboard-event and flag is false.

else (c:sys origin -- 1st 2nd) compile-only

Compilation: Put a new unresolved forward reference 1st onto the stack and save a copy of the
compiler data type heap as 2nd. Append the runtime semantics given below to the current
definition. The semantics are incomplete until 1st and 2nd are resolved, e. g., by then. Resolve
the forward reference c:sys using the location following the appended runtime semantics.
Restore the compiler data type heap to the state that was saved when origin was created.

Runtime: Continue execution at the location given by the resolution of 1st.

emit (integer --)

Send the ASCII code of integer to the default output stream.

emit (integer output-stream --)

Send the ASCII code of integer to output-stream.

emit is a virtual method of the output-stream class.

emit? (-- flag)

flag is true if the user output device is ready to accept data and the execution of emit in place
of emit? would not have suffered an indefinite delay.

empty-buffers (--)

Unassign the block buffer. Do not transfer the contents of the block buffer to the block file.

enclosing (local-definition -- do-destination)

If local-definition is a loop index, do-destination identifies the do loop. Otherwise,
do-destination is null.

enclosing! (do-destination local-definition --)

Make local-definition a loop index by assigning do-destination as the destination of
the associated do loop.

strong.sf

block.sf

StrongForth.f 3.1 Glossary: assembler 78

end-compilation (--)

Enter interpretation state. Delete all definitions in the locals vocabulary.

end-loop (do-destination local-definition --)

An ambiguous condition exists if end-loop is executed in interpretation state.

Delete the loop index local-definition. Search the locals vocabulary for a local index with
the name j. If it exists, rename it to i. An exception is thrown if the contents of the compiler data
type heap, after consuming single, do not exactly match the copy that was saved when do-
destination was created.

end-structure (structure-attributes object-size --)

Terminate the definition of a structure started by begin-structure.

endcase (c:sys endof-origin of-origin --) compile-only

Compilation: Mark the end of a case ... of ... endof ... endcase structure. Delete
of-origin. Use c:sys and endof-origin to resolve the entire structure. Compare the
current contents of the compiler data type heap with the one that was saved by the first endof. An
exception is thrown if a difference is detected. Append the runtime semantics given below to the
current definition.

Runtime: Continue execution.

Note that endcase does not discard the case selector.

endclass (vocabulary object-size --)

Store object-size in the virtual method table of the class that is currently being defined. If the
virtual method table does not yet exist, create it in the data space. Save the protected vocabulary. If
the class has friends, create a new vocabulary for the definitions of the concatenated private and
protected vocabularies, that may be accessed by friends. Restore vocabulary as the current
compilation vocabulary. Remove the private and protected vocabularies as well as the vocabularies
of all friend classes from the context vocabulary list.

endclass ends a class definition.

enddef (definition --)

Make definition the definition most recently added to the current vocabulary.

enddef (local-definition --)

Make local-definition the definition most recently added to the locals vocabulary.

endof (c:sys of-origin endof-origin -- 1st 3rd 2nd) compile-only

Compilation: Resolve the reference given by the second c:sys. Append the runtime semantics
given below to the current definition. Lock the compiler data type heap. If this is the first
occurrence of endof within a case structure, save the contents of the compiler data type heap as

strong.sf

struct.sf

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 79

endof-origin. Otherwise, compare the contents of the compiler data type heap with the one
that was saved in endof-origin by the first endof. An exception is thrown if a difference is
detected. Leave of-origin unchanged.

Runtime: Continue execution at the location specified by the consumer of 2nd.

endof-origin (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type endof-
origin.

endunion (object-size object-size object-size -- 1st)

Terminate a union of members within a class definition. 1st is the maximum of the second and the
third object-size.

erase (address -> double unsigned --)

If unsigned is not equal to zero, clear all bits in each of unsigned consecutive double cells of
memory beginning at address -> double.

erase (address -> float unsigned --)

If unsigned is not equal to zero, clear all bits in each of unsigned consecutive floating-point
numbers beginning at address -> float.

erase (address -> single unsigned --)

If unsigned is not equal to zero, clear all bits in each of unsigned consecutive cells of memory
beginning at address -> single.

erase (caddress -> single unsigned --)

If unsigned is not equal to zero, clear all bits in each of unsigned consecutive character
positions of memory beginning at caddress -> single.

erase (dfaddress -> float unsigned --)

If unsigned is not equal to zero, clear all bits in each of unsigned consecutive double-
precision floating-point numbers beginning at dfaddress -> float.

erase (object --)

Set all members of object to zero.

erase (sfaddress -> float unsigned --)

If unsigned is not equal to zero, clear all bits in each of unsigned consecutive single-precision
floating-point numbers beginning at sfaddress -> float.

strong.sf

strong.sf

float.sf

strong.sf

strong.sf

float.sf

float.sf

StrongForth.f 3.1 Glossary: assembler 80

escaped-char (character – 1st)

Convert character, the second character of a string escape sequence starting with a \
(backslash), into the associated substitition 1st according to the following translation rules. All
other characters remain unchanged.

Escape sequence Substitution

\a
\b
\e
\f
\l
\m
\n
\q
\r
\t
\v
\xyy
\z

<bel>
<bs>
<esc>
<ff>
<lf>
<lf>
<lf>
" (quote)
<cr>
<ht>
<vt>
(see below)
<nul>

\m and \n perform the following additional semantics: Add <cr> to the end of the string
conversion area.

\xyy performs the following semantics: Parse two hexadecimal digits yy and return the resulting
two-digit ASCII code. An exception is thrown if \x is not followed by two hexadecimal characters.

evaluate (caddress -> character unsigned --)

Save the default input stream. Create a new string input stream, initialize it with caddress ->
character unsigned and make it the new default input stream. Set >in to zero, and
interpret. When the parse area is empty, delete the associated input source and restore the default
input source to its saved value. Other stack effects are due to the words evaluated.

exception-frame (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type exception-
frame.

exception-frame (signed signed exception-frame – 3rd)

Initialize exception-frame by erasing all members. Establish a link to the current exception
frame and make exception-frame the current exception frame. Save the default input stream
and the input source specification. Save the first signed as the data stack balance and the second
signed as the hardware floating-point stack balance. Return exception-frame as 3rd.

Once exception-frame is deleted, the previous exception frame is restored.

exception-frame is the constructor of the exception-frame class.

execute ((--) --)

Performs the semantics of the definition identified by its qualified execution token (--). The
definition has no input and output parameters.

escape.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 81

execute ((--string) – caddress -> character unsigned)

Performs the semantics of the definition identified by the qualified execution token (--string).
caddress -> character and unsigned are the output parameters of the definition.

execute (definition --)

Remove definition from the stack and perform the semantics identified by it. Apply the stack
effects of definition to the interpreter data type heap. An ambiguous condition exists if
execute is executed in compilation state.

execute (definition single search-criterion -- flag)

Performs the semantics of the definition identified by the qualified execution token search-
definition. definition, single and flag are the input and output parameters of the
definition.

execute (unsigned (unsigned--) --)

Performs the semantics of the definition identified by the qualified execution token (unsigned-
-). unsigned is the input parameter of the definition.

execute-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

flag is true if and only if the virtual method table of definition is equal to the virtual
method table of (execute) and the last input parameter of definition is equal to the
qualified token with the data type attributes single.

Note: Provide search-criterion to search in order to find a definition created by
)procreates that executes a qualified token of a given data type.

execute-only (--)

Make the latest definition an execute-only word. The interpreter finds this definition only if in
interpretation state.

exit (--) compile-only

Compilation: Append the runtime semantics given below to the current definition. An exception is
thrown if the contents of the compiler data type heap do not exactly match the output parameters of
the current definition. Lock the compiler data type heap.

Runtime: Remove the stack frame and return to the calling definition.

exp (float -- 1st)

Raise e to the power float, giving 1st.

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 82

expm1 (float -- 1st)

Raise e to the power float and subtract one, giving 1st.

f>d (float -- signed-double)

signed-double is the numerical equivalent of the integer portion of float. The fractional
portion of float is discarded. An ambiguous condition exists if the integer portion of float
cannot be represented as a double-cell signed integer.

Rounding the floating-point value prior to calling f>s is advised, because f>s always rounds
towards zero.

f>s (float -- signed)

signed is the numerical equivalent of the integer portion of float. The fractional portion of
float is discarded. An ambiguous condition exists if the integer portion of float cannot be
represented as a single-cell signed integer.

Rounding the floating-point value prior to calling f>s is advised, because f>s always rounds
towards zero.

falign (--)

If the first unused address of the data space is not float aligned, reserve the required number of
address units to make it float aligned.

Floating-point numbers are stored in a 10-byte format. Each address that is a multiple of 2 is
assumed to be float aligned.

faligned (address -- 1st)

1st is the lowest float aligned address greater than or equal to address.

Floating-point numbers are stored in a 10-byte format. Each address that is a multiple of 2 is
assumed to be float aligned.

false (-- flag)

flag is a false flag, a single-cell item with all bits set to 0.

fam (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type fam.

fdepth (-- unsigned)

unsigned is the number of floating-point numbers contained on the hardware floating-point stack
(0 to 8).

file (stack-diagram -- 1st)

float.sf

float.sf

StrongForth.f 3.1 Glossary: assembler 83

When used in a stack diagram, specifies an input or output parameter with data type file.

file-input-stream (file unsigned file-input-stream -- 3rd)

Initialize file-input-stream by erasing all members. Make file the input file. Allocate
unsigned characters from dynamic memory as input buffer. 3rd is file-input-stream.

file-input-stream is a constructor of the file-input-stream class.

file-input-stream (file-input-stream 1st – 1st)

Copy all members of file-input-stream to 1st. 1st is 1st. 1st shares the same input
buffer as file-input-stream. The input buffer will not be deallocated when 1st is deleted.
An ambiguous condition exists if 1st is used after file-input-stream has been deleted.

file-input-stream is a constructor of the file-input-stream class.

file-input-stream (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type file-
input-stream.

file-output-stream (file file-output-stream -- 2nd)

Initialize file-output-stream by erasing all members. Make file the output file. 2nd is
file-output-stream.

file-output-stream is a constructor of the file-output-stream class.

file-output-stream (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type file-
output-stream.

fill (address -> double unsigned 2nd --)

If unsigned is not equal to zero, store 2nd in each of unsigned consecutive double cells of
memory, beginning at address -> double.

fill (address -> float unsigned 2nd --)

If unsigned is not equal to zero, store 2nd in each of unsigned consecutive floating-point
numbers, beginning at address -> float.

fill (address -> single unsigned 2nd --)

If unsigned is not equal to zero, store 2nd in each of unsigned consecutive cells of memory,
beginning at address -> single.

fill (caddress -> single unsigned 2nd --)

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 84

If unsigned is not equal to zero, store 2nd in each of unsigned consecutive character
positions, beginning at caddress -> single.

fill (dfaddress -> float unsigned 2nd --)

If unsigned is not equal to zero, store 2nd in each of unsigned consecutive double-precision
floating-point numbers, beginning at dfaddress -> float.

fill (sfaddress -> float unsigned 2nd --)

If unsigned is not equal to zero, store 2nd in each of unsigned consecutive single-precision
floating-point numbers, beginning at sfaddress -> float.

first (vocabulary -- definition)

definition is the first definition that has been added to vocabulary.

flag (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type flag.

float (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type float.

float-definition (caddress -> character unsigned float-definition
-- 4 th)

Initialize float-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when float-
definition is deleted. Assign float-definition a name given by the character string
caddress -> character unsigned and return it as 4 th.

float-definition is a constructor of the float-definition class.

float-definition (float-definition -- 1st)

Initialize float-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when float-
definition is deleted.

float-definition is a constructor of the float-definition class.

float-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type float-
definition.

float-lit (--) immediate

strong.sf

float.sf

StrongForth.f 3.1 Glossary: assembler 85

Remove the floating-point literal vocabulary from both the context vocabulary list and the hidden
vocabulary list. Make the floating-point literal vocabulary the head of the context vocabulary list.
An ambiguous condition exists if the floating-point literal vocabulary was not included in one of
the two vocabulary lists before float-lit is executed.

The search virtual method of the floating-point literal vocabulary recognizes and converts
floating-point numbers in the following format, if the number-conversion radix base is (decimal)
10.

convertible string := <significand><exponent>
<significand> := [<sign>]<digits>[.<digits0>]
<exponent> := e[<sign>]<digits0>
<sign> := { + | - }
<digits> := <digit><digits0>
<digits0> := <digit>*
<digit> := { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }

float-vocabulary (float-vocabulary -- 1st)

Make float-vocabulary an empty vocabulary and add it as the first item in the hidden
vocabulary list.

float-vocabulary is the constructor of the float-vocabulary class.

float-vocabulary (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type float-
vocabulary.

floating-stack (-- unsigned)

unsigned is the size of the hardware floating-point stack.

floats (integer -- 1st)

1st is the size in address units of integer floating-point numbers.

floor (float -- 1st)

Round float to an integral value using the round toward negative infinity rule, giving 1st.

floored (-- flag)

flag is true if and only if floored division is the default.

flush (--)

If the block buffer is marked as modified, transfer its contents to the block file. Unassign the block
buffer. An exception is thrown if the block buffer is assigned to an invalid block.

flush (file --)

float.sf

block.sf

StrongForth.f 3.1 Glossary: assembler 86

Attempt to force any buffered information written to file to be written to mass storage, and the
size information to be recorded in the storage directory if changed. An exception is thrown if the
operation fails.

fm/mod (signed-double signed -- 2nd signed)

Divide signed-double by signed, giving the floored quotient signed and the remainder
2nd. An exception is thrown if signed is zero. An ambiguous condition exists if the quotient lies
outside the range of a signed single-precision number.

forget ("<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Find name. Delete all definitions
in the current compilation vocabulary starting at the last definition up to and including name.

forget-locals (--)

Delete all definitions in the locals vocabulary.

forth (--) immediate

Remove the forth vocabulary from both the context vocabulary list and the hidden vocabulary
list. Make the forth vocabulary the head of the context vocabulary list. An ambiguous condition
exists if the forth vocabulary was not included in one of the two vocabulary lists before forth
is executed.

forth-vocabulary (-- vocabulary)

vocabulary is the forth vocabulary.

free (address --)

Return the contiguous memory space starting at address to the system for later allocation. An
ambiguous condition exists if address does not indicate a memory space that was previously
obtained by allocate, callocate, dfallocate, sfallocate or resize.

friend-criterion (definition single -- flag)

flag is true if and only if definition is associated with the data type of a class whose
protected vocabulary is equal to the value of single.

Note: Provide the qualified token of friend-criterion to search in order to find the
definition identifying the class with a given protected vocabulary.

friend? (vocabulary -- data-type flag)

If vocabulary is a protected vocabulary, flag is true and data-type is the data type
identifying the class it belongs to. Otherwise, flag is false and data-type is null.

strong.sf

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 87

friends((object-size "<spaces>name1<spaces>name2 ...
<spaces>namen)" -- 1st)

Create a list of n friend classes of the class currently being defined by repeatedly skipping leading
spaces, parsing name, and adding the class identified by name to the list of friends of the currently
defined class. The list of friend classes is terminated by).

object-size is a dummy parameter that ensures that friends(is always used within the
body of a class definition. 1st is object-size.

friends(may be used zero or one time within the body of a class definition. An exception is
thrown if friends(is executed more than once within the body of a class definition, or if a name
is parsed that does not identify a class.

get-current (-- vocabulary)

vocabulary is the current compilation vocabulary.

get-order (-- search-order)

Allocate memory and store the context vocabulary list and the hidden vocabulary list in it.
search-order is an identifier that enables set-order to restore the context vocabulary list
and the hidden vocabulary list.

here (-- address)

address is the first unused address of the data space.

hex (--)

Set the number-conversion radix to 16 (hexadecimal).

hidden (-- address -> vocabulary)

address -> vocabulary is the address of a vocabulary that is not searched by search-
context and all words using it. This vocabulary is actually the head of a linked list of
vocabularies not to be searched.

high (double -- single)

single is the most significant cell of double.

hold (caddress -> character unsigned --)

Prepend unsigned characters starting at caddress -> character to the beginning of the
pictured numeric output string. An ambiguous condition exists if hold executes outside of a <#
... #> delimited pictured numeric output conversion. An exception is thrown if the transient area
used for storing the pictured numeric output overflows.

hold (character --)

order.sf

order.sf

StrongForth.f 3.1 Glossary: assembler 88

Prepend character to the beginning of the pictured numeric output string. An ambiguous
condition exists if hold executes outside of a <# ... #> delimited pictured numeric output
conversion. An exception is thrown if the transient area used for storing the pictured numeric
output overflows.

hold> (caddress -> character unsigned --)

Append unsigned characters starting at caddress -> character to the end of the string
conversion area. An ambiguous condition exists if the string conversion area is used for other
purposes before string conversion is done. An exception is thrown if the string conversion area
overflows.

hold> (character --)

Append character to the end of the string conversion area. An ambiguous condition exists if the
string conversion area is used for other purposes before string conversion is done. An exception is
thrown if the string conversion area overflows.

host' ("<spaces>name" -- token)

Skip leading space delimiters. Parse name delimited by a space. Search the host system’s context
vocabularies for name and return its token as token. An exception is thrown if name is not
found.

identity-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

flag is true if and only if the input and output parameters of the stack diagram single are
identical to the input and output parameters of definition.

Note: Provide search-criterion to search in order to find a definition with a given name
and stack diagram.

if (-- c:sys origin) compile-only

Compilation: Create a new unresolved forward reference c:sys and save a copy of the compiler
data type heap as origin. Append the runtime semantics given below to the current definition.
The semantics are incomplete until c:sys and origin are resolved, e. g., by then or else.

Runtime: (single --)

If single is zero, continue execution at the location specified by the resolution of c:sys.

ignore (--) immediate

If the context vocabulary list is not empty, remove the vocabulary at the head of the context
vocabulary list and prepend it of the hidden vocabulary list.

ignore-all (--)

strong.sf

strong.sf

strong.sf

strong.sf

order.sf

StrongForth.f 3.1 Glossary: assembler 89

Remove all vocabularies from the context vocabulary list and add them to of the hidden vocabulary
list.

ignore-friends (--)

Remove all protected vocabularies from the context vocabulary list and prepend them to the hidden
vocabulary list.

immediate (--)

Make the latest definition an immediate word.

immediate? (definition -- flag)

flag is true if and only if definition is an immediate definition or a compile-only
definition.

include ("<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Open the file with the name name
in read-only mode. Position the file pointer to the start of the file. An exception is thrown if the file
does not exist or the operation fails.

Save the default input stream. Create a new file input stream, initialize it with the opened file and
make it the new default input stream. Other stack effects are due to the words included.

Repeat until end of file: Read a line from the file, fill the input buffer from the contents of that line,
set >in to zero, and interpret. Text interpretation begins at the file position where the next file read
would occur.

When the end of the file is reached, close the file, delete the associated input source and restore the
default input source to its saved value. An exception is thrown if there is an I/O exception reading
the file, or if an I/O exception occurs while closing the file. When an exception is thrown, the status
(open or closed) of any files that were being interpreted is undefined. Create a definition name
with the execution semantics defined below, and make it the latest definition.

Execution: Throw an exception.

include (caddress -> character unsigned --)

Open the file with the name given by the character string caddress -> character
unsigned in read-only mode. Position the file pointer to the start of the file. An exception is
thrown if the file does not exist or the operation fails.

Save the default input stream. Create a new file input stream, initialize it with the opened file and
make it the new default input stream. Other stack effects are due to the words included.

Repeat until end of file: Read a line from the file, fill the input buffer from the contents of that line,
set >in to zero, and interpret. Text interpretation begins at the file position where the next file read
would occur.

When the end of the file is reached, close the file, delete the associated input source and restore the
default input source to its saved value. An exception is thrown if there is an I/O exception reading
the file, or if an I/O exception occurs while closing the file. When an exception is thrown, the status
(open or closed) of any files that were being interpreted is undefined. Create a definition with the

strong.sf

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 90

name specified by the string caddress -> character unsigned and the execution
semantics defined below, and make it the latest definition.

Execution: Throw an exception.

include (file --)

Save the default input stream. Create a new file input stream, initialize it with file and make it
the new default input stream. Other stack effects are due to the words included.

Repeat until end of file: Read a line from the file, fill the input buffer from the contents of that line,
set >in to zero, and interpret. Text interpretation begins at the file position where the next file read
would occur.

When the end of the file is reached, close the file, delete the associated input source and restore the
default input source to its saved value. An exception is thrown if file is invalid, if there is an I/O
exception reading file, or if an I/O exception occurs while closing file. When an exception is
thrown, the status (open or closed) of any files that were being interpreted is undefined.

input-param, (data-type stack-diagram --)

Append data-type as an additional input parameter to stack-diagram. An exception is
thrown if the internal storage for input and output parameters of stack-diagram is exceeded.

input-params (definition -- address -> data-type unsigned)

address -> data-type is the address of the first input parameter of the stack diagram of
definition. unsigned is the number of basic data types in the input parameter list of the
stack diagram of definition.

input-params (stack-diagram -- address -> data-type unsigned)

address -> data-type is the address of the first input parameter of stack-diagram.
unsigned is the number of basic data types in the input parameter list of stack-diagram.

input-stream (input-stream 1st – 1st)

Copy all members of input-stream to 1st. 1st is 1st. 1st shares the same input buffer as
input-stream. The input buffer will not be deallocated when 1st is deleted. An ambiguous
condition exists if 1st is used after input-stream has been deleted.

input-stream is a constructor of the input-stream class.

input-stream (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type input-
stream.

input-stream (unsigned input-stream -- 2nd)

Initialize input-stream by erasing all members. Allocate unsigned characters from dynamic
memory as input buffer. 2nd is input-stream.

StrongForth.f 3.1 Glossary: assembler 91

input-stream is a constructor of the input-stream class.

integer (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type integer.

integer-double (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type integer-
double.

integer-lit (--) immediate

Remove the integer literal vocabulary from both the context vocabulary list and the hidden
vocabulary list. Prepend the integer literal vocabulary to the context vocabulary list. An ambiguous
condition exists if the integer literal vocabulary was not included in one of the two vocabulary lists
before integer-lit is executed.

The search virtual method of the integer literal vocabulary recognizes and converts integer
numbers in the following format, if the digits are within the allowed range of the number-
conversion radix base.

convertible string := [<prefix>][<sign>]<digits>[.] | '<char>'
<prefix> := { # | $ | % }
<sign> := { + | - }
<digits> := <digit><digits0>
<digits0> := <digit>*
<digit> := { { 0-9 } | { A-Z } | { a-z } }

If a prefix is provided, the contents of base is temporarily changed to 10 (#), 16 ($) or 2 (%). A
digit has a value ranging from zero to one less than the contents of base. The digit with the value
zero corresponds to the character 0. This representation of digits proceeds through the character set
to the decimal value nine corresponding to the character 9. For digits beginning with the decimal
value ten the graphic characters beginning with the characters A or a are used. This correspondence
continues up to and including the digit with the decimal value thirty-five which is represented by
the characters Z or z.

Convertible strings with no leading sign and no trailing period are converted into unsigned
numbers. Convertible strings with a leading sign and no trailing period are converted into signed
numbers. Convertible strings with no leading sign and a trailing period are converted into
unsigned-double numbers. Convertible strings with a leading sign and a trailing period are
converted into signed-double numbers.

If the convertible string consists of a graphic character <char> enclosed by single quotes, it is
converted into a character with the ASCII value of the graphic character.

integer-vocabulary (integer-vocabulary -- 1st)

Make integer-vocabulary an empty vocabulary and prepend it to the hidden vocabulary list.

integer-vocabulary is the constructor of the integer-vocabulary class.

integer-vocabulary (stack-diagram -- 1st)

StrongForth.f 3.1 Glossary: assembler 92

When used in a stack diagram, specifies an input or output parameter with data type integer-
vocabulary.

interpret (--)

Interpret the contents of the parse area.

Search and compile or execute each word in the parse area. The search process is done in the
following order:

1. In compilation state, search in the locals vocabulary using search-local. If a local
with the given name is found, compile this local.

2. Search in the context vocabularies using search-context with match-criterion.
If a matching definition is found, compile or execute it depending on state and the
attributes of the definition:

state attributes semantics

false
false
false
false
true
true
true
true

immediate
execute-only
compile-only

immediate
execute-only
compile-only

execute
execute
execute
none
compile
execute
none
execute

3. If this is in the locals vocabulary, compile it and search again in the context vocabularies
using search-context with match-criterion, then compile the matching
definition.

An exception is thrown if one of the words in the parse area does not match any part of the search
process.

invert (data-type -- 1st)

1st is data-type with attributes that are the bit-by-bit logical inverse of the attributes of
data-type.

invert (logical -- 1st)

Invert all bits of logical, giving its logical inverse 1st.

is ("<spaces>name" --) compile-only

Compilation: Skip leading space delimiters. Parse name delimited by a space. Find a deferred
definition with the name name. An exception is thrown if no deferred definition with the name
name exists. Append the runtime semantics given below to the current definition.

Runtime: (definition --)

Assign the execution semantics of definition to name. An exception is thrown if the stack
diagram of definition does not match the stack diagram of name according to the rules of the
StrongForth data type system.

Deferred definitions are words defined by defer.

strong.sf

StrongForth.f 3.1 Glossary: assembler 93

is (definition "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Find a deferred definition with the
name name. An exception is thrown if no deferred definition with name name exists or if the stack
diagram of definition does not match the stack diagram of name according to the rules of the
StrongForth data type system. Assign the execution semantics of definition to name.

Deferred definitions are words defined by defer.

is (object-size definition "<spaces>name" -- 1st)

If the class that is currently being defined does not yet have a virtual method table, create a virtual
method table in the data space and initialize it with object-size and the tokens of the parent
class plus unassigned tokens for newly added virtual methods. Otherwise, just update the
existing virtual method table with object-size.

Skip leading space delimiters. Parse name delimited by a space. Find a virtual definition with the
name name. An exception is thrown if no virtual definition with name name exists or if the stack
diagram of definition does not match the stack diagram of name according to the rules of the
StrongForth data type system. Assign the execution semantics of definition to name.

Virtual definitions are words defined by virtual.

k-alt-mask (-- logical)

logical is a mask for the ALT key, that can be ored with the key value to produce a value that
the sequence ekey ekey>fkey may produce when the user presses the corresponding key
combination.

k-ctrl-mask (-- logical)

logical is a mask for the CTRL key, that can be ored with the key value to produce a value that
the sequence ekey ekey>fkey may produce when the user presses the corresponding key
combination.

k-delete (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “delete” key.

k-down (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “cursor down” key.

k-end (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “end” key.

k-F1 (-- unsigned)

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 94

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “F1” key.

k-F10 (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “F10” key.

k-F11 (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “F11” key.

k-F12 (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “F12” key.

k-F2 (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “F2” key.

k-F3 (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “F3” key.

k-F4 (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “F4” key.

k-F5 (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “F5” key.

k-F6 (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “F6” key.

k-F7 (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “F7” key.

k-F8 (-- unsigned)

StrongForth.f 3.1 Glossary: assembler 95

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “F8” key.

k-F9 (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “F9” key.

k-home (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “home” or “pos1” key.

k-insert (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “insert” key.

k-left (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “cursor left” key.

k-next (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “PgDn” key.

k-prior (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “PgUp” key.

k-right (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “cursor right” key.

k-shift-mask (-- logical)

logical is a mask for the SHIFT key, that can be ored with the key value to produce a value
that the sequence ekey ekey>fkey may produce when the user presses the corresponding key
combination.

k-up (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “cursor up” key.

StrongForth.f 3.1 Glossary: assembler 96

key (-- character)

Receive character from the user input device. All standard characters can be received.
Characters received by key are not echoed.

key? (-- flag)

flag is true if and only if a character is available at the user input device. If non-character
keyboard events are available before the first valid character, they are discarded and are
subsequently unavailable. The character will be returned by the next execution of key.

After key? returns with a value of true, subsequent executions of key? prior to the execution of
key or ekey also return true, without discarding keyboard events.

keyboard-event (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type keyboard-
event.

label ("<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. name is referred to as a label.

Execution: (-- address)

address is the value of here at the time name is being defined.

last (vocabulary -- definition)

definition is the definition most recently added to vocabulary.

last! (definition vocabulary --)

Makes definition the definition most recently added to vocabulary.

latest (-- definition)

definition is the latest compiled definition. Since latest is a value, it can be reassigned
with to.

leave (--) compile-only

Compilation: An exception is thrown if the contents of the compiler data type heap do not exactly
match the copy that was saved when the current loop control parameters were created. Lock the
compiler data type heap. Append the runtime semantics given below to the current definition.

Runtime: Discard the current loop control parameters. An ambiguous condition exists if they are
unavailable. Continue execution immediately following the innermost syntactically enclosing do
loop.

line (-- caddress -> character)

asm.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 97

caddress -> character is the address of a transient area used to hold data for intermediate
character string processing. The transient area is /hold characters long.

Note: This transient area is used by the system for storing error messages, for escape string
processing and for pictured numeric output.

link (definition definition --)

Establish a link from the second definition to the first definition without updating
latest.

link-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

flag is true if and only if definition is the successor of the definition single within its
vocabulary, i. e., definition is linked to single.

Note: Provide search-criterion to search in order to find the successor of a given
definition.

list (unsigned --)

Store unsigned in scr. Send block unsigned as 16 lines of text to the default output stream.

literal (double --) compile-only

Compilation: Append the runtime semantics given below to the current definition.

Runtime: Place double on the stack. double has the same data type as was supplied at
compilation time.

literal (float --) compile-only

Compilation: Append the runtime semantics given below to the current definition.

Runtime: Place float on the stack. float has the same data type as was supplied at compilation
time.

literal (single --) compile-only

Compilation: Append the runtime semantics given below to the current definition.

Runtime: Place single on the stack. single has the same data type as was supplied at
compilation time.

literal, (double address -> data-type --)

Append the runtime semantics given below to the current definition.

Runtime: (-- x)

block.sf

strong.sf

float.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 98

Place double-cell literal x on the stack. x has the compound data type stored at address ->
data-type and the value given by double.

literal, (float address -> data-type --)

Append the runtime semantics given below to the current definition.

Runtime: (-- x)

Place floating-point literal x on the stack. x has the compound data type stored at address ->
data-type and the value given by float.

literal, (single address -> data-type --)

Append the runtime semantics given below to the current definition.

Runtime: (-- x)

Place single-cell literal x on the stack. x has the compound data type stored at address ->
data-type and the value given by single.

ln (float -- 1st)

1st is the natural logarithm of float. An ambiguous condition exists if float is less than or
equal to zero.

lnp1 (float -- 1st)

1st is the natural logarithm of the quantity float plus one. An ambiguous condition exists if
float is less than or equal to -1.

load (unsigned --)

Save the default input stream. Create a new block input stream, and make it the new default input
stream. Store unsigned in blk. Set >in to zero, and interpret block unsigned. Once the parse
area cannot be refilled, delete the associated input source and restore the default input source to its
saved value. Other stack effects are due to the words loaded. An exception is thrown if
unsigned is not a valid block number.

local (colon-definition "<spaces>name" -- 1st) compile-only

Compilation: Skip leading space delimiters. Parse name delimited by a space. Create a new local
whose definition name is given by name. Append the runtime semantics given below to the current
definition.

Runtime: (single --)

Initialize the local with the value of single. When invoked, the local will return its value. The
value of the local may be changed using to.

local-definition (caddress -> character unsigned local-definition
-- 4 th)

block.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 99

Initialize local-definition by erasing all members. Establish a link to the previous
definition in the locals vocabulary without updating latest. Links will be removed when
local-definition is deleted. Assign local-definition a name given by the character
string caddress -> character unsigned and return it as 4 th.

local-definition is the constructor of the local-definition class.

local-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type local-
definition.

locals (--) immediate

Remove the locals vocabulary from both the context vocabulary list and the hidden vocabulary
list. Make the locals vocabulary the head of the context vocabulary list. An ambiguous condition
exists if the locals vocabulary was not included in one of the two vocabulary lists before
locals is executed.

locals((colon-definition "<spaces>name1<spaces>name2 ...
<spaces>namen<spaces>)" -- 1st) compile-only

Compilation: Create local identifiers by repeatedly skipping leading spaces, parsing name, and
executing (local). The list of locals to be defined is terminated by). An ambiguous condition
exists if the list of locals is not terminated by). Append the runtime semantics given below to the
current definition.

Runtime: (single1 single2 ... singlen --)

Initialize n local identifiers, each of which takes as its initial value one of the values on the stack,
in the given order. The first identifier name1 is initialized with single1, identifier name2 with
single2, etc. When invoked, each local will return its value. The value of a local may be changed
using to.

locals-vocabulary (-- vocabulary)

vocabulary is the locals vocabulary. Note that the locals vocabulary is emptied after a definition
has been compiled.

locals| (colon-definition "<spaces>name1<spaces>name2 ...
<spaces>namen<spaces>)" -- 1st) compile-only

Compilation: Create local identifiers by repeatedly skipping leading spaces, parsing name, and
executing (local). The list of locals to be defined is terminated by |. An ambiguous condition
exists if the list of locals is not terminated by). Append the runtime semantics given below to the
current definition.

Runtime: (singlen... single2 single1 --)

Initialize n local identifiers, each of which takes as its initial value the top stack item, removing it
from the stack. The first identifier name1 is initialized with single1, identifier name2 with
single2, etc. When invoked, each local will return its value. The value of a local may be changed
using to.

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 100

locase (caddress -> character unsigned --)

Replace each uppercase letter within the character string caddress -> character
unsigned by the equivalent lowercase letter. All other characters remain unchanged. locase
works for German umlauts.

locase (character -- 1st)

If character is an uppercase letter, 1st is the equivalent lowercase letter. Otherwise, 1st is
equal to character. locase works for German umlauts.

log (float -- 1st)

1st is the base-ten logarithm of float. An ambiguous condition exists if float is less than or
equal to zero.

logical (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type logical.

loop (c:sys do-destination --) compile-only

Compilation: Append the runtime semantics given below to the current definition. Resolve both the
forward references and the backward reference of c:sys. Delete the loop index i. Rename the
loop index j, if it exists, to i. An exception is thrown if the contents of the compiler data type heap
do not exactly match the copy that was saved when do-destination was created.

Runtime: An ambiguous condition exists if the loop control parameters are unavailable. Add one to
the loop index. If the loop index is then equal to the loop limit, discard the loop control parameters
and continue execution. Otherwise, branch to the beginning of the loop.

Note: loop takes regard of the data type of the loop index.

If the loop index is an address of a single cell, the size of a single cell in address units is added to
the loop index.

If the loop index is an address of a double cell, the size of a double cell in address units is added to
the loop index.

If the loop index is a character address, the size of a character in address units is added to the loop
index.

If the loop index is an address of a floating-point number, the size of a floating-point number in
address units is added to the loop index.

If the loop index is an address of a single-precision floating-point number, the size of a single-
precision floating-point number in address units is added to the loop index.

If the loop index is an address of a double-precision floating-point number, the size of a double-
precision floating-point number in address units is added to the loop index.

low (double -- single)

single is the least significant cell of double.

ascii.sf

ascii.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 101

lshift (logical -- 1st)

Perform a logical left shift of one bit-place on logical, giving 1st. Put zero into the least
significant bit vacated by the shift.

lshift (logical unsigned -- 1st)

Perform a logical left shift of unsigned bit-places on logical, giving 1st. Put zeros into the
least significant bits vacated by the shift.

m* (signed signed -- signed-double)

signed-double is the double-cell product of the first signed and the second signed. All
numbers and arithmetic are signed.

m* (unsigned unsigned -- unsigned-double)

unsigned-double is the double-cell product of the first unsigned and the second
unsigned. All numbers and arithmetic are unsigned.

m/ (signed-double signed -- signed)

Divide signed-double by signed, giving the symmetric quotient signed. An exception is
thrown if signed is zero. An ambiguous condition exists if the quotient lies outside the range of a
signed single-precision number. If both operands differ in sign, the result returned will be the same
as that returned by the phrase sm/rem nip.

m/ (unsigned-double unsigned -- unsigned)

Divide unsigned-double by unsigned, giving the quotient unsigned. An exception is
thrown if unsigned is zero. An ambiguous condition exists if the quotient lies outside the range
of an unsigned single-precision number.

m/mod (signed-double signed -- 2nd signed)

Divide signed-double by signed, giving the symmetric quotient signed and the remainder
2nd. An exception is thrown if signed is zero. An ambiguous condition exists if the quotient lies
outside the range of a signed single-precision number. If both operands differ in sign, the result
returned will be the same as that returned by sm/rem.

m/mod (unsigned-double unsigned -- 2nd unsigned)

Divide unsigned-double by unsigned, giving the quotient unsigned and the remainder
2nd. An exception is thrown if unsigned is zero. An ambiguous condition exists if the quotient
lies outside the range of an unsigned single-precision number.

marker ("<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below.

strong.sf

StrongForth.f 3.1 Glossary: assembler 102

name Execution: Restore all dictionary allocation pointers and the vocabulary structure as well as
latest as they were just prior to the definition of name. Remove the definition of name and all
subsequent definitions. Restoration of any structures still existing that could refer to deleted
definitions or refer to allocated memory spaces is not necessarily provided. No other contextual
information such as the numeric base is affected.

marker-class (definition marker-definition marker-class -- 3rd)

Initialize marker-class by storing definition and marker-definition as well as the
vocabulary structure as they were prior to the creation of marker-class.

marker-class is the constructor of the marker-class class.

marker-class (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type marker-
class.

marker-definition (marker-definition – 1st)

Initialize marker-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when marker-
definition is deleted. Assign marker-definition the execution semantics defined below.
Return marker-definition as 1st.

Execution: Restore all dictionary allocation pointers.

marker-definition is the constructor of the marker-definition class.

marker-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type marker-
definition.

match (control-flow --)

If the compiler data type heap was locked when control-flow was initialized, do nothing.
Otherwise perform the semantics given below.

If the compiler data type heap is locked, restore the compiler data type heap to the state that was
saved when control-flow was initialized. If the compiler data-type heap is not locked,
compare the compiler data type heap with the one that was saved when control-flow was
initialized. An exception is thrown if they do not exactly match.

match-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

flag is true if and only if the selected data type heap matches the input parameter list of
definition. The matching algorithm follows the rules of the StrongForth data type system.

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 103

The selected data type heap depends on state, the attributes of definition and the value of
single:

single state attributes data type heap

false
false
false
false
false
false
false
false
true
true
true
true
true
true
true
true

false
false
false
false
true
true
true
true
false
false
false
false
true
true
true
true

immediate
execute-only
compile-only

immediate
execute-only
compile-only

immediate
execute-only
compile-only

immediate
execute-only
compile-only

interpreter
interpreter
interpreter
(no match)
compiler
interpreter
(no match)
interpreter
interpreter
interpreter
interpreter
(no match)
compiler
compiler
(no match)
compiler

Note: Provide the search-criterion to search in order to find a definition with matching
input parameters according to the rules of the StrongForth data type system.

match? (address -> data-type unsigned compiler-workspace -- flag
)

flag is true if and only if the data type heap saved in compiler-workspace matches the list
of unsigned basic data types starting at address -> data-type. The matching algorithm
follows the rules of the StrongForth data type system. The list of basic data types may contain
compound data types and data type references.

max (address 1st -- 1st)

1st is the unsigned maximum of address and 1st.

max (float 1st -- 1st)

1st is the maximum of float and 1st.

max (integer 1st -- 1st)

1st is the unsigned maximum of integer and 1st.

max (integer-double 1st -- 1st)

1st is the unsigned maximum of integer-double and 1st.

max (signed 1st -- 1st)

1st is the signed maximum of signed and 1st.

StrongForth.f 3.1 Glossary: assembler 104

max (signed-double 1st -- 1st)

1st is the signed maximum of signed-double and 1st.

max-character (-- unsigned)

unsigned is the maximum value a character can assume.

max-float (-- float)

float is the largest usable floating-point number.

max-locals (-- unsigned)

unsigned is the maximum number of locals in a definition.

max-precision (-- unsigned)

unsigned is the maximum value precision can assume.

max-signed (-- signed)

signed is the maximum value a signed single-precision number can assume.

max-signed-double (-- signed-double)

signed-double is the maximum value a signed double-precision number can assume.

max-unsigned (-- unsigned)

unsigned is the maximum value an unsigned single-precision number can assume.

max-unsigned-double (-- unsigned-double)

unsigned-double is the maximum value an unsigned double-precision number can assume.

member (object-size double "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to cell size, plus the number of bits in two cells.

name is referred to as a class member. member reserves two cells for a class member of the same
data type as double in the class that is currently being defined.

Execution: (x -- address -> y)

address -> y is the address of the class member of the object x, that was reserved at the time
name was created. y is the actual data type that was provided to member as double.

float.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 105

member (object-size float "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to floating-point numbers, plus the size in bits of a floating-point number.

name is referred to as a class member. member reserves space for one floating-point number for a
class member of the same data type as float in the class that is currently being defined.

Execution: (x -- address -> y)

address -> y is the address of the class member of the object x, that was reserved at the time
name was created. y is the actual data type that was provided to member as float.

member (object-size single "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to cell size, plus the number of bits in one cell.

name is referred to as a class member. member reserves one cell for a class member of the same
data type as single in the class that is currently being defined.

Execution: (x -- address -> y)

address -> y is the address of the class member of the object x, that was reserved at the time
name was created. y is the actual data type that was provided to member as single.

members (object-size double unsigned "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to cell size, plus unsigned times the number of bits in two cells.

name is referred to as a class member. members reserves unsigned double cells for an array of
unsigned class members of the same data type as double in the class that is currently being
defined.

Execution: (x -- address -> y)

address -> y is the address of an array of unsigned class members of the object x, that
were reserved at the time name was created. y is the actual data type that was provided to member
as double.

members (object-size float unsigned "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to floating-point numbers, plus unsigned times the size in bits of a
floating-point number.

name is referred to as a class member. members reserves unsigned floating-point numbers for
an array of unsigned class members of the same data type as float in the class that is currently
being defined.

Execution: (x -- address -> y)

float.sf

strong.sf

strong.sf

float.sf

StrongForth.f 3.1 Glossary: assembler 106

address -> y is the address of an array of unsigned class members of the object x, that
were reserved at the time name was created. y is the actual data type that was provided to member
as float.

members (object-size single unsigned "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to cell size, plus unsigned times the number of bits in one cell.

name is referred to as a class member. members reserves unsigned cells for an array of
unsigned class members of the same data type as single in the class that is currently being
defined.

Execution: (x -- address -> y)

address -> y is the address of an array of unsigned class members of the object x, that
were reserved at the time name was created. y is the actual data type that was provided to member
as single.

merge (single single -- double)

Merges two single-cell items single into a double-cell item double. The most significant part
is expected on top of the stack.

min (address 1st -- 1st)

1st is the unsigned minimum of address and 1st.

min (float 1st -- 1st)

1st is the minimum of float and 1st.

min (integer 1st -- 1st)

1st is the unsigned minimum of integer and 1st.

min (integer-double 1st -- 1st)

1st is the unsigned minimum of integer-double and 1st.

min (signed 1st -- 1st)

1st is the signed minimum of signed and 1st.

min (signed-double 1st -- 1st)

1st is the signed minimum of signed-double and 1st.

mod (signed signed -- 2nd)

strong.sf

StrongForth.f 3.1 Glossary: assembler 107

Divide the first signed by the second signed, giving the remainder 2nd. An exception is
thrown if the second signed is zero. If the first signed and the second signed differ in sign,
the result returned will be the same as that returned by the phrase swap s>d swap sm/rem
drop.

mod (unsigned unsigned -- 2nd)

Divide the first unsigned by the second unsigned, giving the remainder 2nd. An exception is
thrown if the second unsigned is zero.

move (address -> double 1st unsigned --)

If unsigned is not equal to zero, copy the contents of unsigned consecutive double cells
starting at address -> double to the unsigned consecutive double cells starting at address
1st. After move completes, the unsigned consecutive double cells starting at address 1st
contain exactly what the unsigned consecutive double cells starting at address -> single
contained before.

Note: The source memory will be partly overwritten if the memory areas overlap.

move (address -> float 1st unsigned --)

If unsigned is not equal to zero, copy unsigned consecutive floating-point numbers starting at
address -> float to address 1st. After move completes, the unsigned consecutive
floating-point numbers starting at address 1st are identical to the unsigned consecutive
floating-point numbers starting at address -> single before.

Note: The source memory will be partly overwritten if the memory areas overlap.

move (address -> single 1st unsigned --)

If unsigned is not equal to zero, copy the contents of unsigned consecutive cells starting at
address -> single to the unsigned consecutive cells starting at address 1st. After move
completes, the unsigned consecutive cells starting at address 1st contain exactly what the
unsigned consecutive cells starting at address -> single contained before.

Note: The source memory will be partly overwritten if the memory areas overlap.

move (caddress 1st unsigned --)

If unsigned is not equal to zero, copy the contents of unsigned consecutive character-size
items starting at caddress to the unsigned consecutive character-size items starting at address
1st. After move completes, the unsigned consecutive character-size items starting at address
1st contain exactly what the unsigned consecutive character-size items starting at caddress
contained before.

Note: The source memory will be partly overwritten if the memory areas overlap.

move (dfaddress 1st unsigned --)

If unsigned is not equal to zero, copy unsigned consecutive double-precision floating-point
numbers starting at dfaddress to address 1st. After move completes, the unsigned

StrongForth.f 3.1 Glossary: assembler 108

consecutive double-precision floating-point numbers starting at address 1st are identical to the
unsigned consecutive double-precision floating-point numbers starting at dfaddress before.

Note: The source memory will be partly overwritten if the memory areas overlap.

move (sfaddress 1st unsigned --)

If unsigned is not equal to zero, copy unsigned consecutive single-precision floating-point
numbers starting at sfaddress to address 1st. After move completes, the unsigned
consecutive single-precision floating-point numbers starting at address 1st are identical to the
unsigned consecutive single-precision floating-point numbers starting at sfaddress before.

Note: The source memory will be partly overwritten if the memory areas overlap.

ms (unsigned --)

Wait at least unsigned milliseconds.

name (definition -- caddress -> character unsigned)

caddress -> character unsigned is a character string representing the name of
definition. caddress -> character is a null address and unsigned is zero if
definition has no name.

negate (float -- 1st)

Negate float, giving its arithmetic inverse 1st.

negate (integer -- 1st)

Negate integer, giving its arithmetic inverse 1st. integer is assumed to be a signed numeric
value.

negate (integer-double -- 1st)

Negate integer-double, giving its arithmetic inverse 1st. integer-double is assumed to
be a signed numeric value.

new ("<spaces>name" --) compile-only

Compilation: Skip leading space delimiters. Parse name delimited by a space. Append the runtime
semantics given below to the current definition.

Runtime: Execute (new) in order to create an object with data type name. Initialize the new
object by compiling name.

new ("<spaces>name" --) execute-only

Interpretation: Skip leading space delimiters. Parse name delimited by a space. Evaluate (new) in
order to create an object with data type name. Initialize the new object by interpreting name.

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 109

new-included-file (caddress -> character unsigned --)

Create a definition with the name specified by the string caddress -> character
unsigned and the execution semantics defined below, and make it the latest definition. The
definition is a marker for an included source file. It is not supposed to be executed.

Execution: Throw an exception.

next (vocabulary -- vocabulary)

vocabulary (output parameter) is the vocabulary succeeding vocabulary (input parameter)
in the vocabulary list it belongs to, or null if vocabulary (input parameter) is the last vocabulary
of the list.

next! (vocabulary vocabulary --)

Make the first vocabulary succeed the second vocabulary in the vocabulary list the second
one belongs to.

nip (double double -- 2nd)

Remove the first item below the top of the stack.

nip (double float -- 2nd)

Remove the first item below the top of the stack.

nip (double single -- 2nd)

Remove the first item below the top of the stack.

nip (float double -- 2nd)

Remove the first item below the top of the stack.

nip (float float -- 2nd)

Remove the first item below the top of the stack.

nip (float single -- 2nd)

Remove the first item below the top of the stack.

nip (single double -- 2nd)

Remove the first item below the top of the stack.

nip (single float -- 2nd)

Remove the first item below the top of the stack.

strong.sf

StrongForth.f 3.1 Glossary: assembler 110

nip (single single -- 2nd)

Remove the first item below the top of the stack.

no-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

Drop definition and single. flag is true.

Note: Provide search-criterion to search if no additional search criterion shall be applied.

nodelete (object --)

Throws an exception, indicating that object can or may not be deleted.

noop (--)

Interpretation: No operation.

Compilation: No operation.

null ("<spaces>name" –-) immediate

Interpretation: (-- y)

Skip leading space delimiters. Parse name delimited by a space. Return y, which has the numerical
value 0 (all bits are zero) and the data type identified by name. y can be a single-cell or double-cell
item or a floating-point number. An exception is thrown if name is not the name of a data type.

Compilation: (--)

Skip leading space delimiters. Parse name delimited by a space. Append the runtime semantics
given below to the current definition. An exception is thrown if name is not the name of a data
type.

Runtime: (-- y)

Return y, which has the numerical value 0 (all bits are zero) and the data type identified by name.
y can be a single-cell or double-cell item or a floating-point number.

number-double (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type number-
double.

object (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type object.

object-size (stack-diagram -- 1st)

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 111

When used in a stack diagram, specifies an input or output parameter with data type object-
size.

object? (data-type -- flag)

flag is true if and only data-type is equal to object, or if data-type is directly or
indirectly derived from object.

octal (--)

Set the number-conversion radix to 8 (octal).

of (c:sys endof-origin of-origin -- 1st 3rd 2nd) compile-only

Compilation: Check if the contents of the compiler data type heap exactly matches the one that was
saved when of-origin was created. An exception is thrown if a difference is detected. Put the
location of a new unresolved forward reference c:sys onto the stack. Append the runtime
semantics given below to the current definition. 1st and 2nd are endof-origin and c:sys,
respectively. 3rd is of-origin. The semantics are incomplete until resolved by a consumer of
1st 3rd 2nd such as endof and endcase.

Runtime: (single 1st --) | (single 1st -- 1st)

If single and 1st are equal, discard both items and continue execution. Otherwise, discard 1st
and continue execution at the location specified by the consumer of 1st 3rd 2nd.

of-origin (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type of-origin.

offset (data-type -- unsigned)

If data-type has the reference attribute, unsigned is the index of the basic data type it refers
to, starting with 1. Otherwise, unsigned is 0.

only (--)

Remove all vocabularies from the context vocabulary list and add them to the hidden vocabulary
list. Add the forth vocabulary to the context vocabulary list and remove it from the hidden
vocabulary list.

open (caddress -> character unsigned fam -- file)

Open the file with the name given by the character string caddress -> character
unsigned as file with file access method fam. Position the file pointer to the start of the file.
An exception is thrown if the file does not exist or the operation fails.

Note: If the file is opened with “write only” file access method, its contents will be destroyed.

or (data-type data-type -- 1st)

strong.sf

strong.sf

strong.sf

order.sf

StrongForth.f 3.1 Glossary: assembler 112

1st is the first data-type with attributes that are the bit-by-bit logical or of the attributes of
both parameters data-type.

or (single logical -- 1st)

1st is the bit-by-bit inclusive-or of single with logical.

order (--)

Send the names of the current compilation vocabulary and the names of all vocabularies in the
context vocabulary list to the default output stream. If a vocabulary is the protected vocabulary of a
class, send the class name instead of the vocabulary name to the default output stream.

origin (origin -- 1st)

Initialize origin by erasing all members. If the compiler data type heap is not locked, save a
copy of the present compiler data type heap.

origin is the constructor of the origin class.

origin (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type origin.

output-params (definition -- address -> data-type unsigned)

address -> data-type is the address of the first output parameter of the stack diagram of
definition. unsigned is the number of basic data types in the output parameter list of the
stack diagram of definition.

output-params (stack-diagram -- address -> data-type unsigned)

address -> data-type is the address of the first output parameter of stack-diagram.
unsigned is the number of basic data types in the output parameter list of stack-diagram.

output-stream (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type output-
stream.

over (double double -- 1st 2nd 1st)

Place a copy of the first double on top of the stack.

over (double float -- 1st 2nd 1st)

Place a copy of double on top of the stack.

over (double single -- 1st 2nd 1st)

strong.sf

StrongForth.f 3.1 Glossary: assembler 113

Place a copy of double on top of the stack.

over (float double -- 1st 2nd 1st)

Place a copy of float on top of the stack.

over (float float -- 1st 2nd 1st)

Place a copy of the first float on top of the stack.

over (float single -- 1st 2nd 1st)

Place a copy of float on top of the stack.

over (single double -- 1st 2nd 1st)

Place a copy of single on top of the stack.

over (single float -- 1st 2nd 1st)

Place a copy of single on top of the stack.

over (single single -- 1st 2nd 1st)

Place a copy of the first single on top of the stack.

pad (-- caddress -> character)

caddress -> character is the address of a scratch area that can be used to hold data for
intermediate character string processing. The scratch area is /pad characters long.

Note: This scratch area is reserved for applications. It will not be used by the system.

page (--)

Move to another page for output. Actual function depends on the output device. On a terminal,
page clears the screen and resets the cursor position to the upper left corner. On a printer, page
performs a form feed.

param, (data-type stack-diagram --)

Append data-type as an input or output parameter to stack-diagram. An exception is
thrown if the internal storage for input and output parameters of stack-diagram is exceeded.

params! (address -> data-type definition --)

Assign a stack diagram to definition. The stack diagram has no input parameters and one
output parameter, which is stored as a compound data type at address -> data-type.

params! (data-type address -> data-type definition --)

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 114

Assign a stack diagram to definition. The stack diagram has no input parameters and one
output parameter. The output parameter is a compound data type which is composed of data-
type as the head and the compound data type at address -> data-type as the tail.

params! (data-type address -> data-type created-definition --)

Assign a stack diagram to created-definition. The stack diagram has one input parameter
and one output parameter. The input parameter has the data type of the class that is currently being
defined. The output parameter is a compound data type which is composed of data-type as the
head and the compound data type at address -> data-type as the tail.

params! (definition created-definition --)

Assign a stack diagram to created-definition, using the input and output parameters of
definition. The last input parameter of definition is excluded.

params! (stack-diagram definition --)

Throws an exception if stack-diagram is incomplete. Assign stack-diagram to
definition. Delete stack-diagram.

params, (address -> data-type stack-diagram --)

Append a compound data type stored at address -> data-type as an input or output
parameter to stack-diagram. Data type attributes are removed, except for the reference and the
prefix attributes. An exception is thrown if the internal storage for input and output parameters of
stack-diagram is exceeded.

params, (address -> data-type unsigned stack-diagram --)

Append unsigned basic data types stored at address -> data-type as input or output
parameters to stack-diagram. Data type attributes are removed, except for the reference and
the prefix attributes. An exception is thrown if the internal storage for input and output parameters
of stack-diagram is exceeded.

params, (definition stack-diagram --)

Append the input parameters of definition as input parameters to stack-diagram. Append
the output parameters of definition as output parameters to stack-diagram. Data type
attributes are removed, except for the reference and the prefix attributes. An exception is thrown if
the internal storage for input and output parameters of stack-diagram is exceeded.

params-alias, (address -> data-type unsigned stack-diagram --)

Append unsigned basic data types stored at address -> data-type as input or output
parameters to stack-diagram. An exception is thrown if the internal storage for input and
output parameters of stack-diagram is exceeded.

params-alias, (definition stack-diagram --)

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 115

Append the input parameters of definition as input parameters to stack-diagram. Append
the output parameters of definition as output parameters to stack-diagram. An exception
is thrown if the internal storage for input and output parameters of stack-diagram is exceeded.

params-stripped, (definition stack-diagram --)

Append the input parameters of definition, except for the last input parameter, as input
parameters to stack-diagram. Append the output parameters of definition as output
parameters to stack-diagram. An exception is thrown if the internal storage for input and
output parameters of stack-diagram is exceeded.

params-virtual, (definition stack-diagram --)

Append the input parameters of definition as input parameters to stack-diagram,
replacing the last input parameter with the data type of the class that is currently being defined.
Append the output parameters of definition as output parameters to stack-diagram. An
exception is thrown if the internal storage for input and output parameters of stack-diagram is
exceeded.

params>dt (definition --)

Append the input parameters of definition to the data type heap selected by state, starting
with the first input parameter. Data type references within the input parameter list are being
resolved by recursively appending the referenced data types onto the data type heap. An exception
is thrown if the data type heap overflows.

parent (data-type -- 1st)

1st is the parent data type of data-type without any attributes set. If data-type does not
have a parent data type, 1st is null.

parent-attributes (-- class-attributes)

class-attributes is the attributes of the parent of the data type of the class that is currently
being defined.

parent-vtable (-- vtable)

vtable is the virtual method table of the parent of the class that is currently being defined.

parse (character "ccc<delimiter>" -- caddress -> character
unsigned)

Parse ccc delimited by character.

caddress -> character is the address within the input buffer and unsigned is the length
of the parsed string. If the parse area was empty, unsigned is zero.

parse-deferred-definition ("<spaces>name" -- deferred-definition
)

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 116

Skip leading space delimiters. Parse name delimited by a space. Find a deferred definition with the
name name and return it as deferred-definition. If no such deferred definition exists,
throw an exception and return null as deferred-definition.

Deferred definitions are words defined by defer.

parse-name ("<spaces>name" -- caddress -> character unsigned)

Skip leading space delimiters. Parse name delimited by a space.

caddress -> character is the address within the input buffer and unsigned is the length
of name. If the parse area was empty, unsigned is zero.

Delimiters are the space character and any character with an ASCII value less than that of a space
character.

period (--)

Send a period (.) to the default output stream.

pi (-- float)

float is π (3.14159265358979323846).

picture (double -- caddress -> character unsigned)

caddress -> character unsigned is the picture of double as an unsigned double-
precision number in free field format.

picture (signed-double -- caddress -> character unsigned)

caddress -> character unsigned is the picture of signed-double as a signed
double-precision number in free field format.

position (file -- unsigned-double)

unsigned-double is the current file position for the file identified by file. An exception is
thrown if the operation fails.

position-block (unsigned --)

Position the file pointer of the block file to the first character of the block with the number
unsigned.

postpone ("<spaces>name" --) compile-only

Compilation: Skip leading space delimiters. Parse name delimited by a space. Find name. Append
the compilation semantics of name to the current definition. An exception is thrown if name is not
found.

precision (-- unsigned)

float.sf

strong.sf

strong.sf

block.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 117

unsigned is the number of significant digits currently used by ., e., or s.. Since precision
is a value, it can be reassigned with to.

prefix? (data-type -- flag)

flag is true if and only if data-type has the dt-prefix attribute.

prev (definition -- definition)

The second definition is the predecessor of the first definition in the same vocabulary, or
null if the first definition has no predecessor.

prev (exception-frame -- exception-frame)

The second exception-frame is the next higher level exception frame of the first
exception-frame, or null if the first exception-frame is at the highest level.

private (--) immediate

Remove the private vocabulary from both the context vocabulary list and the hidden vocabulary
list. Make the private vocabulary the head of the context vocabulary list. An ambiguous
condition exists if the private vocabulary was not included in one of the two vocabulary lists
before private is executed.

private-vocabulary (-- vocabulary)

vocabulary is the private vocabulary. Note that the private vocabulary is not available outside
the scope of a class definition.

procreates (data-type "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. The definition identifies a new data type that is a direct
subtype of data-type and has the same size. An ambiguous condition exists if procreates is
executed in compilation state or if data-type is not a valid data type.

Execution: (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with the new data type.

procreates (data-type unsigned "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. The definition identifies a new data type that is a direct
subtype of data-type and has a size of unsigned address units. If data-type is null, the
new data type has no parent data type. An ambiguous condition exists if procreates is executed
in compilation state.

Execution: (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with the new data type.

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 118

prompt (--)

If in interpretation state, type a command line prompt.

A typical command line prompt is " ok" (including a leading space) followed by carriage return
and line feed.

prompt is a deferred definition.

protected (--) immediate

Remove the protected vocabulary from both the context vocabulary list and the hidden
vocabulary list. Make the protected vocabulary the head of the context vocabulary list. An
ambiguous condition exists if the protected vocabulary was not included in one of the two
vocabulary lists before protected is executed.

protected-vocabulary (-- vocabulary)

vocabulary is the protected vocabulary. Note that the protected vocabulary is not available
outside the scope of a class definition.

quit (--)

If in compilation state, end compilation. Empty the interpreter data type heap. Remove the
private and protected vocabularies from the context vocabulary list. Delete all exception
frames. Make the user input device the default input source. Make the user output device the
default output source. Execute the semantics of the deferred definition (quit). Do not send a
message to the default output stream. Repeat the following until the end of the input source:

Accept a line from the input source, set >in to zero, and interpret. When all processing has been
completed and no exception is thrown, execute prompt.

r-index (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type r-index.

r/o (-- fam)

fam is a constant value for selecting the “read only” file access method when a file is created or
opened.

r/w (-- fam)

fam is a constant value for selecting the “read and write” file access method when a file is created
or opened.

r> (r-index --) compile-only

Compilation: Append the runtime semantics given below to the current definition. Consume r-
index and remove the local r@ from the locals vocabulary. An exception is thrown if r@ does not
exist.

Runtime: (-- x)

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 119

x is the value of the local r@.

read (caddress -> character unsigned file -- 3rd)

Read unsigned consecutive characters to caddress -> character from the current
position of the file identified by file. If unsigned characters are read without an exception,
3rd is equal to unsigned. If the end of the file is reached before unsigned characters are read,
3rd is the number of characters actually read. If the operation is initiated when the value returned
by position is equal to the value returned by size for the file identified by file, 3rd is zero.

An ambiguous condition exists if the operation is initiated when the value returned by position
is greater than the value returned by size for the file identified by file, or if the requested
operation attempts to read portions of the file not written. At the conclusion of the operation,
position returns the next file position after the last character read.

read-line (caddress -> character unsigned file -- 3rd flag)

Read the next line from the file specified by file into memory at caddress -> character.
At most unsigned characters are read. Up to two line-terminating characters (carriage return and
line feed) may be read into memory at the end of the line, but are not included in the count 3rd.
The line buffer provided by caddress -> character should be at least unsigned + 2
characters long. If the operation succeeded, flag is true. If a line terminator was received before
unsigned characters were read, then 3rd is the number of characters actually read, not including
the line terminator (0 <= 3rd <= unsigned). When unsigned = 3rd, the line terminator has
yet to be reached. If the operation is initiated when the value returned by position is equal to the
value returned by size for the file identified by file, flag is false, and 3rd is zero.

An ambiguous condition exists if the operation is initiated when the value returned by position
is greater than the value returned by size for the file identified by file, or if the requested
operation attempts to read portions of the file not written. At the conclusion of the operation,
position returns the next file position after the last character read.

read-line works correctly with files containing <cr>/<lf> or <lf>-only end-of-line
sequences.

recurse (--) compile-only

Compilation: Change the compiler data type heap according to the stack effect of the current
definition. Append the execution semantics of the current definition to the execution semantics of
current definition. An ambiguous condition exists if recurse appears in a definition after
does>.

reempty (string-output-stream --)

Empty the output buffer of string-output-stream.

reference? (data-type -- flag)

flag is true if and only if data-type has the dt-reference attribute.

refill (-- flag)

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 120

Attempt to fill the input buffer of the default input stream. If successful, set >in to zero, and return
true as flag. Receipt of a line containing no characters is considered successful. If there is no
input available from the default input stream, return false as flag.

refill (input-stream -- flag)

Attempt to fill the input buffer of input-stream. If successful set >in to zero and return true
as flag. Receipt of a line containing no characters is considered successful. If there is no input
available from input-stream, return false as flag.

refill is a virtual method of the input-stream class.

rename (caddress -> character unsigned caddress -> character
unsigned --)

Rename the file with the path given by the first character string caddress -> character
unsigned to the name given by the second character string caddress -> character
unsigned. An exception is thrown if the operation fails.

repeat (c:sys origin c:sys destination --) compile-only

Compilation: Append the runtime semantics given below to the current definition, resolving the
backward reference c:sys (third parameter). An exception is thrown if the contents of the
compiler data type heap do not exactly match the copy that was saved when destination was
created. Resolve the forward reference c:sys (first parameter) using the location following the
appended runtime semantics. Restore the compiler data type heap to the state that was saved when
origin was created.

Runtime: Continue execution at the location given by c:sys (third parameter).

replaces ((--string) caddress -> character unsigned --)

Set (--string) as the execution token that provides the text to substitute for the substitution
named caddress -> character unsigned. An ambiguous condition exists if the name of
the substitution contains the delimiter character.

If the substitution does not exist, create a definition with the name specified by the character string
caddress -> character unsigned with the execution semantics defined below.

Execution: (-- caddress -> character unsigned)

caddress -> character unsigned is the text returned by executing (--string).

replaces (caddress -> character unsigned 1st 3rd --)

Set the string caddress -> character unsigned as the text to substitute for the
substitution named 1st 3rd. An ambiguous condition exists if the name of the substitution
contains the delimiter character.

If the substitution does not exist, create a definition with the name specified by the character string
1st 3rd with the execution semantics defined below.

Execution: (-- caddress -> character unsigned)

caddress -> character unsigned is a copy of the text provided to replaces.

strong.sf

strext.sf

strext.sf

StrongForth.f 3.1 Glossary: assembler 121

reposition (unsigned-double file --)

Reposition the file identified by file to the file position unsigned-double. An exception is
thrown if the operation fails.

represent (float caddress -> character unsigned -- signed flag
flag)

At caddress -> character, place the character-string external representation of the
significand of the floating-point number float. Return the decimal-base exponent as signed,
the sign of the significand as the first flag and valid result as the second flag. The character
string consists of the unsigned most significant digits of the significand represented as a decimal
fraction with the implied decimal point to the left of the first digit, and the first digit zero only if all
digits are zero. The significand is rounded to unsigned digits following the round to nearest rule;
signed is adjusted, if necessary, to correspond to the rounded magnitude of the significand. The
second flag is true if and only if float was a valid floating-point number. The first flag is
true if and only if float is negative.

require ("<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. If the file specified by name has
not already been included or required, but not between the definition and execution of a marker,
perform the function of include.

An ambiguous condition exists if a file is required while it is being required or included. An
ambiguous condition exists, if a marker is defined outside and executed inside a file or vice versa,
and the file is required again. An ambiguous condition exists if the same file is required twice using
different names, or different files with the same name are required.

require (caddress -> character unsigned --)

If the file specified by the string caddress -> character unsigned has already been
included or required, but not between the definition and execution of a marker, drop caddress -
> character unsigned. Otherwise, perform the function of include.

An ambiguous condition exists if a file is required while it is being required or included. An
ambiguous condition exists, if a marker is defined outside and executed inside a file or vice versa,
and the file is required again. An ambiguous condition exists if the same file is required twice using
different names, or different files with the same name are required.

resize (address unsigned -- 1st)

Change the size of a memory block that has been previously allocated at address. unsigned is
the new size of the memory block. If address is null, resize performs the semantics of
allocate. If unsigned is zero, resize performs the semantics of free. 1st is the address of
the first byte of the reallocated memory block. Note that 1st may differ from address. An
exception is thrown if the operation fails. An ambiguous condition exists if address does not
indicate a memory space that was previously obtained by allocate, callocate,
dfallocate, sfallocate or resize.

resize (unsigned-double file --)

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 122

Set the size of the file identified by file to unsigned-double. If the resultant file is larger
than the file before the operation, the portion of the file added as a result of the operation is
undefined. At the conclusion of the operation, both size and position return the value
unsigned-double. An exception is thrown if the operation fails.

restore (control-flow --)

Restore the compiler data type heap to the state that was saved when control-flow was
initialized.

restore (marker-class --)

Restore all dictionary allocation pointers and the vocabulary structure as well as latest as they
were just prior to the definition of name. Remove the definition of name and all subsequent
definitions.

restore-input (input-stream -- flag)

Attempt to restore the default input stream from input-stream, which was created by save-
input. flag is true if and only if the default input stream cannot be restored.

An ambiguous condition exists if the input source of the default input stream is not the same as that
of input-stream.

restore-input (input-stream 1st -- flag)

Attempt to restore 1st from input-stream, which was created by save-input. flag is
true if and only if 1st cannot be restored.

An ambiguous condition exists if the input source of 1st is not the same as that of input-
stream.

restore-input is a virtual method of the input-stream class.

retreat (--)

Change the order in which definitions are linked within the current vocabulary by inserting the
latest definition immediately before the previous overloaded version with the same name. An
exception is thrown if the latest definition is the only version with this name.

retreat (unsigned --)

Change the order in which definitions are linked within the current vocabulary by inserting the
latest definition immediately before the previous unsignedth overloaded version with the same
name. An exception is thrown if the latest definition has less than unsigned previously defined
overloaded versions.

return-stack-cells (-- unsigned)

unsigned is the size of the return stack in cells.

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 123

rot (double double double -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (double double float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (double double single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (double float double -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (double float float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (double float single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (double single double -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (double single float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (double single single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (float double double -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (float double float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (float double single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (float float double -- 2nd 3rd 1st)

StrongForth.f 3.1 Glossary: assembler 124

Rotate the top three stack entries.

rot (float float float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (float float single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (float single double -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (float single float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (float single single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single double double -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single double float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single double single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single float double -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single float float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single float single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single single double -- 2nd 3rd 1st)

Rotate the top three stack entries.

StrongForth.f 3.1 Glossary: assembler 125

rot (single single float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single single single -- 2nd 3rd 1st)

Rotate the top three stack entries.

round (float -- 1st)

Round float to an integral value using the round to nearest rule, giving 1st.

rshift (logical -- 1st)

Perform a logical right shift of one bit-place on logical, giving 1st. Put zero into the most
significant bit vacated by the shift.

rshift (logical unsigned -- 1st)

Perform a logical right shift of unsigned bit-places on logical, giving 1st. Put zeros into the
most significant bits vacated by the shift.

runtime (created-definition -- definition)

definition is the definition containing the runtime code of created-definition.

runtime! (definition created-definition --)

Specifies definition as the definition containing the runtime code of created-
definition.

runtime-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

flag is true if and only if definition was created by create and its runtime code-
definition is equal to single.

Note: Provide search-criterion to search if only definitions created by create with a
given runtime code-definition shall be found.

s. (float --)

Send float with a trailing space using scientific notation to the default output stream. The
significand is greater than or equal to 1.0 and less than 10.0:

Exponential notation := <significand><exponent>
<significand> := [-]<digits>.<digits0>
<exponent> := e[-]<digit><digit><digit>

float.sf

StrongForth.f 3.1 Glossary: assembler 126

<digits> := <digit><digits0>
<digits0> := <digit>*
<digit> := { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }

An exception is thrown if the value of the number-conversion radix base is not (decimal) 10.

s>d (integer -- integer-double)

Convert the unsigned single number integer to the unsigned double number integer-
double with the same numerical value.

s>d (signed -- signed-double)

Convert the signed single number signed to the signed double number signed-double with
the same numerical value.

s>d (single -- double)

Convert the unsigned single number single to the unsigned double number double with the
same numerical value.

s>d (unsigned -- unsigned-double)

Convert the unsigned single number unsigned to the unsigned double number unsigned-
double with the same numerical value.

s>f (signed -- float)

float is the floating-point equivalent of the signed single number signed.

s>f (single -- float)

float is the floating-point equivalent of the unsigned single number single.

save-buffers (--)

If the block buffer is marked as modified, transfer its contents to the block file. Mark the block
buffer as not modified. An exception is thrown if the block buffer is assigned to an invalid block.

save-input (-- input-stream)

input-stream is a copy of the default input stream made for later use by restore-input.
Note that the copy shares the input buffer with the original.

save-input (input-stream -- 1st)

1st is a copy of the input-stream made for later use by restore-input. Note that the
copy shares the input buffer with the original.

save-input is a virtual method of the input-stream class.

block.sf

StrongForth.f 3.1 Glossary: assembler 127

scr (-- address -> unsigned)

address -> unsigned is the address of a cell containing the number of the block most
recently listed.

search (caddress -> character unsigned 1st 3rd -- 1st 3rd flag)

Search the string specified by caddress -> character unsigned for the sub-string
specified by 1st 3rd. If flag is true, a match was found at 1st with 3rd characters
remaining. If flag is false there was no match and 1st is caddress -> character and
3rd is unsigned.

search (caddress -> character unsigned single search-criterion
vocabulary -- definition flag)

Search vocabulary for the definition whose name is given by the character string caddress
-> character unsigned. If the definition is found, return it as definition and true as
flag. If the definition is not found, return null as definition and false as flag.

search-criterion is the token of an additional match criterion. If the additional match
criterion requires a parameter, the parameter is passed by single.

If unsigned is zero, the definition's name is not considered. Only the match criterion specified by
search-criterion and single matters.

search is a virtual method of the vocabulary class.

search-all (caddress -> character unsigned single search-
criterion -- definition flag)

Search the first context vocabulary for the definition whose name is given by the character string
caddress -> character unsigned. search-criterion is the token of an additional
match criterion. If the additional match criterion requires a parameter, the parameter is passed by
single.

If unsigned is zero, the definition's name is not considered. Only the match criterion specified by
search-criterion and single matters.

If the definition is found, return it as definition and true as flag. If the definition is not
found, try to search all other context vocabularies and then all hidden vocabularies, until either a
definition is found or until the last vocabulary in the hidden vocabulary list has been searched. If
the definition is not found in any vocabulary, return zero as definition and false as flag.

search-context (caddress -> character unsigned single search-
criterion -- definition flag)

Search the first context vocabulary for the definition whose name is given by the character string
caddress -> character unsigned. search-criterion is the token of an additional
match criterion. If the additional match criterion requires a parameter, the parameter is passed by
single.

If unsigned is zero, the definition's name is not considered. Only the match criterion specified by
search-criterion and single matters.

If the definition is found, return it as definition and true as flag. If the definition is not
found, try to search the other context vocabularies, until either a definition is found or until the last

block.sf

StrongForth.f 3.1 Glossary: assembler 128

vocabulary in the context vocabulary list has been searched. If the definition is not found in any of
the context vocabularies, return zero as definition and false as flag.

search-criterion (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type search-
criterion.

search-list (caddress -> character unsigned single search-
criterion vocabulary -- definition flag)

Search vocabulary for the definition whose name is given by the character string caddress
-> character unsigned. search-criterion is the token of an additional match
criterion. If the additional match criterion requires a parameter, the parameter is passed by
single.

If unsigned is zero, the definition's name is not considered. Only the match criterion specified by
search-criterion and single matters.

If the definition is found, return it as definition and true as flag. If the definition is not
found, try to search the other vocabularies linked to vocabulary, until either a definition is
found or until the last vocabulary in the vocabulary list has been searched. If the definition is not
found in any of the vocabularies, return zero as definition and false as flag.

search-local (caddress -> character unsigned -- local-definition
flag)

Search the locals vocabulary for the definition whose name is given by the character string
caddress -> character unsigned. If state is true and the definition is found, return
it as local-definition and true as flag. If state is false or the definition is not
found, return zero as definition and false as flag.

search-order (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type search-
order.

see ("<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Search the context vocabularies
for name. Send a human-readable representation of the definition of name, including its stack
diagram, to the default output stream.

see (definition --)

Send a human-readable representation definition, including its stack diagram, to the default
output stream.

see is a virtual method of the definition class.

set-current (vocabulary --)

order.sf

order.sf

StrongForth.f 3.1 Glossary: assembler 129

Make vocabulary the current compilation vocabulary.

set-order (search-order --)

Restore the context vocabulary list and the hidden vocabulary list from search-order.
search-order is an identifier created by get-order.

set-precision (unsigned --)

Set the number of significant digits currently used by ., e., and s. to the minimum of max-
precision and unsigned.

sf, (float --)

Reserve space for a single-precision floating-point number in the data space and store float as a
single-precision floating-point number in it. If the first unused address of the data space is cell
aligned prior to execution of sf,, it will remain cell aligned when sf, finishes execution. An
ambiguous condition exists if the first unused address of the data space is not cell aligned prior to
execution of sf,. An exception is thrown if the data space overflows.

sfaddress (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type sfaddress.

sfalign (--)

If the first unused address of the default memory space is not single-precision floating-point
aligned, reserve the required number of address units to make it single-precision floating-point
aligned.

sfaligned (address -- 1st)

1st is the lowest single-precision floating-point aligned address greater than or equal to
address.

sfallocate (unsigned -- sfaddress)

Allocate unsigned address units of contiguous dynamic memory space. The initial content of the
allocated memory space is undefined. If the allocation succeeds, sfaddress is the aligned
starting address of the allocated memory space. An exception is thrown if the operation fails.

sfhere (-- sfaddress)

sfaddress is the first unused address of the data space.

sfloats (integer -- 1st)

1st is the size in address units of integer single-precision floating-point numbers.

order.sf

float.sf

float.sf

float.sf

StrongForth.f 3.1 Glossary: assembler 130

sfmember (object-size float "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to single-precision floating-point numbers, plus the size in bits of a single-
precision floating-point number.

name is referred to as a class member. sfmember reserves space for one single-precision
floating-point number for a class member of the same data type as float in the class that is
currently being defined.

Execution: (x -- sfaddress -> y)

sfaddress -> y is the address of the class member of the object x, that was reserved at the
time name was created. y is the actual data type that was provided to sfmember as float.

sfmembers (object-size float unsigned "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to single-precision floating-point numbers, plus unsigned times the size
in bits of a single-precision floating-point number.

name is referred to as a class member. sfmembers reserves unsigned single-precision
floating-point numbers for an array of unsigned class members of the same data type as float
in the class that is currently being defined.

Execution: (x -- sfaddress -> y)

sfaddress -> y is the address of an array of unsigned class members of the object x, that
were reserved at the time name was created. y is the actual data type that was provided to
sfmembers as float.

sfvariable (float "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve data space for a single-precision floating-point
number at a single float aligned address and store float at the address.

name is referred to as a variable.

Execution: (-- sfaddress -> x)

sfaddress -> x is the address of the single-precision floating-point number. x has the same
data type as was supplied to variable.

sfvariables (float unsigned "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve data space for unsigned single-precision
floating-point numbers at a single float aligned address and store float in each of them.

name is referred to as a variable.

Execution: (-- sfaddress -> x)

sfaddress -> x is the address of the first single-precision floating-point number. x has the
same data type as was supplied to variable.

float.sf

float.sf

float.sf

float.sf

StrongForth.f 3.1 Glossary: assembler 131

sign (signed-double --)

If signed-double is true, add a minus sign to the beginning of the pictured numeric output
string.

signed (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type signed.

signed-double (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type signed-
double.

sin (float -- 1st)

1st is the sine of the radian angle float.

sincos (float -- 1st 1st)

The first 1st is the sine of the radian angle float. The second 1st is the cosine of the radian
angle float.

single (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type single.
single has no parent data type.

single-definition (caddress -> character unsigned single-
definition -- 4 th)

Initialize single-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when single-
definition is deleted. Assign single-definition a name given by the character string
caddress -> character unsigned and return it as 4 th.

single-definition is a constructor of the single-definition class.

single-definition (single-definition -- 1st)

Initialize single-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when single-
definition is deleted. 1st is single-definition.

single-definition is a constructor of the single-definition class.

single-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type single-
definition.

StrongForth.f 3.1 Glossary: assembler 132

single? (integer-double -- flag)

flag is true if and only if integer-double can be represented as an unsigned single-cell
integer, i. e., its value is less than max-unsigned.

single? (signed-double -- flag)

flag is true if and only if signed-double can be represented as a signed single-cell integer,
i. e., its value is between max-signed negate 1- and max-signed.

sinh (float -- 1st)

1st is the hyperbolic sine of float.

size (data-type -- unsigned)

unsigned is the size in address units of items of data type data-type, or zero if the size
cannot be determined.

size (file -- unsigned-double)

unsigned-double is the size in characters of the file identified by file. size does not affect
the value returned by position. An exception is thrown if the operation fails.

size (object -- unsigned)

unsigned is the memory size in address units of object.

size (vtable -- unsigned)

unsigned is the memory size in address units of objects whose virtual method table is vtable.

sliteral (caddress -> character unsigned --) compile-only

Compilation: Append the runtime semantics given below to the current definition.

Runtime: (-- caddress -> character unsigned)

Place a copy of the string caddress -> character unsigned onto the stack. Both items
have the same data types as were supplied at compilation time.

sliteral, (caddress -> character unsigned address -> data-type --
)

Append the runtime semantics given below to the current definition.

Runtime: (-- x y)

Place two single-cell literals x and y on the stack. x has the compound data type stored at
address -> data-type and the value given by caddress -> character. y has the
compound data type stored at address -> data-type plus one and the value given by
unsigned.

strong.sf

StrongForth.f 3.1 Glossary: assembler 133

sm/rem (signed-double signed -- 2nd signed)

Divide signed-double by signed, giving the symmetric quotient signed and the remainder
2nd. An exception is thrown if signed is zero. An ambiguous condition exists if the quotient lies
outside the range of a signed single-precision number.

smember (object-size data-type "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size, plus the size in bits of the structure associated with data-type. An exception is
thrown if data-type is not directly or indirectly derived from structure.

name is referred to as a class member. smember reserves space for an embedded structure with
data type data-type in the structure that is currently being defined.

Execution: (x -- address -> y)

address -> y is the address of the member of the structure x, that was reserved at the time
name was created. y is an item with data type data-type.

smembers (object-size data-type unsigned "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size, plus unsigned times the size in bits of the structure associated with data-
type. An exception is thrown if data-type is not directly or indirectly derived from
structure.

name is referred to as a class member. smember reserves space for an array of unsigned
embedded structures with data type data-type in the structure that is currently being defined.

Execution: (x -- address -> y)

address -> y is the address of an array of unsigned members of the structure x, that were
reserved at the time name was created. y is an item with data type data-type.

source (-- caddress -> character unsigned)

caddress -> character is the address of the input buffer of the default input stream.
unsigned is the number of characters in the input buffer of the default input stream.

source (input-stream -- caddress -> character unsigned)

caddress -> character is the address of the input buffer of input-stream. unsigned
is the number of characters in the input buffer of input-stream.

space (--)

Send a space character to the default output stream.

spaces (integer --)

struct.sf

struct.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 134

If integer is greater than zero, send integer spaces to the default output stream.

Note: integer is assumed to be a signed number.

split (double -- single single)

Splits a double-cell item double into two single-cell items single. The most significant part is
on top of the stack.

sqrt (float -- 1st)

1st is the square root of float. An ambiguous condition exists if float is less than zero.

stack-cells (-- unsigned)

unsigned is the size of the data stack in cells.

stack-diagram (flag stack-diagram -- 2nd)

Initialize stack-diagram by erasing all members. Save flag as the compilation state. The
compilation state is restored once stack-diagram is deleted.

stack-diagram is the constructor of the stack-diagram class.

stack-diagram (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type stack-
diagram.

state (-- caddress -> flag)

caddress -> flag is the address of the compilation state. state is true when in
compilation state, and false when in interpretation state.

static ("<spaces>name" --) compile-only

Compilation: Skip leading spaces. Parse name delimited by a space. Append the runtime semantics
given below to the current definition.

Runtime: Execute (static) in order to create an object with data type name. Initialize the new
object by compiling name.

static ("<spaces>name" --) execute-only

Interpretation: Skip leading spaces. Parse name delimited by a space. Evaluate (static) in
order to create an object with data type name. Initialize the new object by interpreting name.

status (caddress -> character unsigned -- single)

single is the status of the file identified by the character string caddress -> character
unsigned. An exception is thrown if the operation fails.

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 135

string (string-output-stream -- caddress -> character unsigned)

caddress -> character is the address of the output buffer of string-output-stream.
unsigned is the number of characters that have been sent to string-output-stream.

string-input-stream (caddress -> character unsigned string-input-
stream -- 4 th)

Initialize string-input-stream by erasing all members. Make caddress ->
character unsigned the input buffer. 4 th is string-input-stream. The input buffer
will not be deallocated when string-input-stream is deleted.

string-input-stream is a constructor of the string-input-stream class.

string-input-stream (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type string-
input-stream.

string-input-stream (string-input-stream 1st – 1st)

Copy all members of string-input-stream to 1st. 1st is 1st. 1st shares the same input
buffer as string-input-stream. The input buffer will not be deallocated when 1st is
deleted.

string-input-stream is a constructor of the string-input-stream class.

string-output-stream (caddress -> character unsigned string-
output-stream -- 4 th)

Initialize string-output-stream by erasing all members. Make caddress ->
character unsigned the output buffer. 4 th is string-output-stream. The output
buffer will not be deallocated when string-output-stream is deleted.

string-output-stream is the constructor of the string-output-stream class.

string-output-stream (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type string-
output-stream.

structure (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type structure.

structure-attributes (data-type unsigned structure-attributes --
3rd)

Initialize structure-attributes by erasing all members. Store the attributes of data-
type as the parent of the data type associated with structure-attributes. Store
unsigned as the size of the data type associated with structure-attributes.

strong.sf

strong.sf

strong.sf

struct.sf

struct.sf

StrongForth.f 3.1 Glossary: assembler 136

structure-attributes is the constructor of the structure-attributes class.

structure-attributes (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type structure-
attributes.

structure-size (data-type -- unsigned)

unsigned is the memory size in address units of a structure with data type data-type. An
exception is thrown if data-type is not directly or indirectly derived from structure.

structure? (data-type -- flag)

flag is true if and only if data-type is equal to structure, or if data-type is directly
or indirectly derived from structure.

substitute (caddress -> character unsigned -- unsigned)

Perform substitution on the string caddress -> character unsigned sending the result
to the default output stream. unsigned is the number of substitutions made, or zero if an error
occurred. Substitution occurs left to right starting at caddress -> character in one pass and
is non-recursive.

When text of a potential substitution name, surrounded by delimiters, is encountered by
substitute, the following occurs:

If the text is null, a single delimiter character is sent to the default output stream, i.e., two
delimiter characters are replaced by one. The current number of substitutions is not changed.

If the text is a valid substitution name acceptable to replaces, the leading and trailing
delimiter characters and the enclosed substitution name are replaced by the substitution text.
The current number of substitutions is incremented.

If the text is not a valid substitution name, the name with leading and trailing delimiters is sent
unchanged to the default output stream. The current number of substitutions is not changed. Parsing
of the input string resumes after the trailing delimiter.

If after processing any pairs of delimiters, the residue of the input string contains a single
delimiter, the residue is sent unchanged to the default output stream.

substitute (caddress -> character unsigned caddress -> character
unsigned -- 4 th 6 th unsigned)

Perform substitution on the first string caddress -> character unsigned placing the
result at the second string caddress -> character unsigned. 4 th is the second
caddress -> character, 6th is the length of the resulting string. An exception is thrown if
the resulting string is longer than the second unsigned. The return value unsigned is the
number of substitutions made, or zero if an error occurred, leaving 4 th and 6 th undefined.
Substitution occurs left to right starting at caddress -> character in one pass and is non-
recursive.

When text of a potential substitution name, surrounded by delimiters, is encountered by
substitute, the following occurs:

struct.sf

struct.sf

struct.sf

strext.sf

strext.sf

StrongForth.f 3.1 Glossary: assembler 137

If the text is null, a single delimiter character is passed to the output, i.e., two delimiter
characters are replaced by one. The current number of substitutions is not changed.

If the text is a valid substitution name acceptable to replaces, the leading and trailing
delimiter characters and the enclosed substitution name are replaced by the substitution text.
The current number of substitutions is incremented.

If the text is not a valid substitution name, the name with leading and trailing delimiters is
passed unchanged to the output. The current number of substitutions is not changed. Parsing of the
input string resumes after the trailing delimiter.

If after processing any pairs of delimiters, the residue of the input string contains a single
delimiter, the residue is passed unchanged to the output.

substitute (file file -- unsigned)

Perform substitution on the contents of the first file writing the result to the second file. The
return value unsigned is the number of substitutions made, or zero if an error occurred.
Substitution occurs from the start to the end of the first file in one pass and is non-recursive.

When text of a potential substitution name, surrounded by delimiters, is encountered by
substitute, the following occurs:

If the text is null, a single delimiter character is written to the output file, i.e., two
delimiter characters are replaced by one. The current number of substitutions is not changed.

If the text is a valid substitution name acceptable to replaces, the leading and trailing
delimiter characters and the enclosed substitution name are replaced by the substitution text.
The current number of substitutions is incremented.

If the text is not a valid substitution name, the name with leading and trailing delimiters is
written unchanged to the output file. The current number of substitutions is not changed. Parsing of
the input string resumes after the trailing delimiter.

If after processing any pairs of delimiters, the residue of the current line contains a single
delimiter, the residue is written unchanged to the output file.

swap (double double -- 2nd 1st)

Exchange the two items on top of the stack.

swap (double float -- 2nd 1st)

Exchange the two items on top of the stack.

swap (double single -- 2nd 1st)

Exchange the two items on top of the stack.

swap (float double -- 2nd 1st)

Exchange the two items on top of the stack.

swap (float float -- 2nd 1st)

strext.sf

StrongForth.f 3.1 Glossary: assembler 138

Exchange the two items on top of the stack.

swap (float single -- 2nd 1st)

Exchange the two items on top of the stack.

swap (single double -- 2nd 1st)

Exchange the two items on top of the stack.

swap (single float -- 2nd 1st)

Exchange the two items on top of the stack.

swap (single single -- 2nd 1st)

Exchange the two items on top of the stack.

tan (float -- 1st)

1st is the tangent of the radian angle float. An ambiguous condition exists if the cosine of
float is zero.

tanh (float -- 1st)

1st is the hyperbolic tangent of float.

terminal-input-stream (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type terminal-
input-stream.

terminal-input-stream (terminal-input-stream 1st – 1st)

Copy all members of terminal-input-stream to 1st. 1st is 1st. 1st shares the same
input buffer as terminal-input-stream. The input buffer will not be deallocated when 1st
is deleted. An ambiguous condition exists if 1st is used after terminal-input-stream has
been deleted.

terminal-input-stream is a constructor of the terminal-input-stream class.

terminal-input-stream (unsigned terminal-input-stream -- 2nd)

Initialize terminal-input-stream by erasing all members. Allocate unsigned characters
from dynamic memory as input buffer. 2nd is terminal-input-stream.

terminal-input-stream is a constructor of the terminal-input-stream class.

terminal-output-stream (stack-diagram -- 1st)

StrongForth.f 3.1 Glossary: assembler 139

When used in a stack diagram, specifies an input or output parameter with data type terminal-
output-stream.

terminal-output-stream (terminal-output-stream -- 1st)

No operation, because class terminal-output-stream has no members. 1st is
terminal-output-stream.

terminal-output-stream is the constructor of the terminal-output-stream class.

th (stack-diagram unsigned -- 1st)

Append a reference to the basic data type with the position unsigned of the input parameter list,
starting with 1, as an input or output parameter to stack-diagram.

th is used in a stack diagram to specify input or output parameters which should have exactly the
same data type as the actual data type at the position unsigned in the input parameter list of the
same definition. Since the index refers to the basic data types in the input parameter list, it is
possible to build a reference to the tail of a compound data type representing an input parameter.

An exception is thrown if unsigned is zero, if unsigned is greater than the length of the input
parameter list, if the referenced data type is itself a reference, or if the internal storage for input and
output parameters of stack-diagram is exceeded.

then (c:sys origin --) compile-only

Compilation: Append the runtime semantics given below to the current definition. Resolve the
forward reference c:sys using the current location. An exception is thrown if the contents of the
compiler data type heap do not match the copy that was saved when origin was created.

Runtime: Continue execution.

this-attributes (-- class-attributes)

class-attributes is the attributes of the data type of the class that is currently being defined.

this-attributes is a value.

this-vtable (-- vtable)

vtable is the virtual method table of the class that is currently being defined.

throw (signed --)

If signed is not equal to zero, perform the following semantics:

Restore the default input stream, the input source specification and the exception frame to the state
they had when exception-frame was initialized. Continue execution at the location at which
exception-frame was created. Adjust the depths of all stacks, so that they are the same as the
depths saved in the exception frame, put signed on top of the data stack, and transfer control to a
point just after the catch that created that exception frame.

If the top of the stack is non zero and there is no exception frame on the exception stack, the
behavior is as follows:

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 140

If signed is -1, perform the function of abort, sending no message to the default output stream.

If signed is -2, perform the function of abort" sending the character string associated with the
abort" that generated the throw to the default output stream.

Otherwise, send an error message to the default output stream that gives information about the
condition associated with the throw code signed. Subsequently, perform the function of abort.

thru (unsigned 1st --)

load the blocks numbered unsigned through 1st in sequence. Other stack effects are due to
the words loaded. An exception is thrown if unsigned is greater than 1st, or if either
unsigned or 1st are no valid block numbers.

time&date (-- unsigned unsigned unsigned unsigned unsigned
unsigned)

Return the current time and date represented by six unsigned numbers in the given order: second
(0 to 59), minute (0 to 59), hour (0 to 23), day (1 to 31), month (1 to 12), and year (e.g., 2007). The
year is on top of the stack.

to ("<spaces>name" --) compile-only

Skip leading space delimiters. Parse name delimited by a space. Append the runtime semantics
given below to the current definition. An exception is thrown if name is not either a value
definition or a locals definition, or if the compound data type on top of the compiler data type heap
does not match the tail of the compound data type of the output parameter of name.

Runtime: (x --)

Store x in the value or local identified by name.

to (x "<spaces>name" --) execute-only

Skip leading space delimiters. Parse name delimited by a space. Store x in the value identified by
name. An exception is thrown if name is not a value definition or if x does not match the tail of
the compound data type of the output parameter of name.

to-local-definition (local-definition to-local-definition -- 2nd
)

Initialize to-local-definition by copying all members of local-definition. Assign
the null string as the name of to-local-definition. The output parameter of local-
definition becomes the input parameter of to-local-definition.

Note: to-local-definition is used as a temporary definition that allows changing the value
of local-definition in a type-save way.

to-local-definition is the constructor of the to-local-definition class.

to-local-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type to-local-
definition.

block.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 141

to-value-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type to-value-
definition.

to-value-definition (value-definition to-value-definition -- 2nd
)

Initialize to-value-definition by copying all members of value-definition. Assign
the null string as the name of to-value-definition. The output parameter of value-
definition becomes the input parameter of to-value-definition.

Note: to-value-definition is used as a temporary definition that allows changing the value
of value-definition in a type-save way.

to-value-definition is the constructor of the to-value-definition class.

token (definition – token)

token is the execution token of definition, or null if definition has no execution token.

token (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type token.

token-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

flag is true if and only if the value of single is the execution token of definition.

Note: Provide search-criterion to search in order to find a definition with a specific
execution token.

true (-- flag)

flag is a true flag, a single-cell item with all bits set to 1.

trunc (float -- 1st)

Round float to an integral value using the round toward zero rule, giving 1st.

tuck (double double -- 2nd 1st 2nd)

Copy the first (top) stack item below the second stack item.

tuck (double float -- 2nd 1st 2nd)

Copy the first (top) stack item below the second stack item.

strong.sf

StrongForth.f 3.1 Glossary: assembler 142

tuck (double single -- 2nd 1st 2nd)

Copy the first (top) stack item below the second stack item.

tuck (float double -- 2nd 1st 2nd)

Copy the first (top) stack item below the second stack item.

tuck (float float -- 2nd 1st 2nd)

Copy the first (top) stack item below the second stack item.

tuck (float single -- 2nd 1st 2nd)

Copy the first (top) stack item below the second stack item.

tuck (single double -- 2nd 1st 2nd)

Copy the first (top) stack item below the second stack item.

tuck (single float -- 2nd 1st 2nd)

Copy the first (top) stack item below the second stack item.

tuck (single single -- 2nd 1st 2nd)

Copy the first (top) stack item below the second stack item.

tuple (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type tuple.

type (caddress -> character unsigned --)

Send unsigned characters starting at caddress -> character to the default output stream.

type (caddress -> character unsigned output-stream --)

Send unsigned characters starting at caddress -> character to output-stream.

type is a virtual method of the output-stream class.

unassigned (object --)

Throws an exception, indicating that a virtual method of object has not yet been assigned.

unescape (caddress -> character unsigned --) strext.sf

StrongForth.f 3.1 Glossary: assembler 143

Perform substitution on the string caddress -> character unsigned sending the result
to the default output stream. Substitution occurs left to right starting at caddress ->
character in one pass and is non-recursive.

Replace each delimiter character in the input string with two delimiter characters.

unescape (caddress -> character unsigned caddress -> character
unsigned – 4 th 6 th)

Perform substitution on the first string caddress -> character unsigned placing the
result at the second string caddress -> character unsigned. 4 th is the second
caddress -> character, 6th is the length of the resulting string. An exception is thrown if
the resulting string is longer than the second unsigned. Substitution occurs left to right starting at
caddress -> character in one pass and is non-recursive.

Replace each delimiter character in the input string with two delimiter characters.

unescape (file file --)

Perform substitution on the contents of the first file writing the result to the second file.
Substitution occurs from the start to the end of the first file in one pass and is non-recursive.

Replace each delimiter character in the input file with two delimiter characters.

union (object-size -- 1st 1st 1st)

Starts a union of members within a class definition. All parameters 1st are equal to object-
size. The first 1st is the starting bit position of the union, the second 1st is the end bit position
of the largest block so far, and the third 1st is the current bit position of the current block.

unsigned (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type unsigned.

unsigned-double (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type unsigned-
double.

until (c:sys destination --) compile-only

Compilation: Append the runtime semantics given below to the current definition, resolving the
backward reference c:sys. An exception is thrown if the contents of the compiler data type heap,
after consuming single, do not exactly match the copy that was saved when destination
was created.

Runtime: (single --)

If single is zero, continue execution at the location specified by c:sys. Otherwise, continue
execution. single is not taken into consideration when comparing the contents of the compiler
data type heap with the copy that was saved when destination was created.

strext.sf

strext.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 144

unused (-- unsigned)

unsigned is the number of address units remaining in the default memory space, starting at
here.

upcase (caddress -> character unsigned --)

Replace each lowercase letter within the character string caddress -> character
unsigned into the equivalent uppercase letter. All other characters remain unchanged. upcase
works for German umlauts.

upcase (character -- 1st)

If character is a lowercase letter, 1st is the equivalent uppercase letter. Otherwise, 1st is
equal to character. upcase works for German umlauts.

update (--)

Mark the block buffer as modified by storing true in updated.

Note: update does not immediately cause a transfer to the block file.

updated (-- address -> flag)

address -> flag is the address of a cell containing a flag. The flag is true if and only if the
block stored in the block buffer has been modified.

user-input-device (-- terminal-input-stream)

terminal-input-stream is the predefined terminal input device.

user-output-device (-- terminal-output-stream)

terminal-output-stream is the predefined terminal output device.

value (double "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve two cells of data space at a cell aligned address
and store double at the address.

name is referred to as a value.

Execution: (-- x)

x is the content of the reserved pair of cells. The value of x is that given when name was created,
until the phrase to name is executed, causing a new value of x to be associated with name. x has
the same data type as was supplied to value.

value (float "<spaces>name" --)

ascii.sf

ascii.sf

block.sf

block.sf

strong.sf

float.sf

StrongForth.f 3.1 Glossary: assembler 145

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve data space for a floating-point number at a float
aligned address and store float at the address.

name is referred to as a value.

Execution: (-- x)

x is the content of the reserved data space. The value of x is that given when name was created,
until the phrase to name is executed, causing a new value of x to be associated with name. x has
the same data type as was supplied to value.

value (single "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve one cell of data space at a cell aligned address and
store single at the address.

name is referred to as a value.

Execution: (-- x)

x is the content of the reserved cell. The value of x is that given when name was created, until the
phrase to name is executed, causing a new value of x to be associated with name. x has the
same data type as was supplied to value.

value-definition (double caddress -> character unsigned value-
definition -- 4 th)

Initialize value-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when value-
definition is deleted. Store double as the initial value that is returned when value-
definition is executed. Assign value-definition a name given by the character string
caddress -> character unsigned and return it as 4 th.

value-definition is a constructor of the value-definition class.

value-definition (float caddress -> character unsigned value-
definition -- 4 th)

Initialize value-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when value-
definition is deleted. Store float as the initial value that is returned when value-
definition is executed. Assign value-definition a name given by the character string
caddress -> character unsigned and return it as 4 th.

value-definition is a constructor of the value-definition class.

value-definition (single caddress -> character unsigned value-
definition -- 4 th)

Initialize value-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when value-
definition is deleted. Store single as the initial value that is returned when value-

strong.sf

StrongForth.f 3.1 Glossary: assembler 146

definition is executed. Assign value-definition a name given by the character string
caddress -> character unsigned and return it as 4 th.

value-definition is a constructor of the value-definition class.

value-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type value-
definition.

value-definition (token caddress -> character unsigned value-
definition -- 5 th)

Initialize value-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when
constant-definition is deleted. Assign value-definition the execution semantics
specified by token. Assign value-definition a name given by the character string
caddress -> character unsigned and return it as 5 th.

value-definition is a constructor of the value-definition class.

variable (double "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve two cells of data space at a cell aligned address
and store double at the address.

name is referred to as a variable.

Execution: (-- address -> x)

address -> x is the address of the reserved pair of cells. x has the same data type as was
supplied to variable.

variable (float "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve data space for a floating-point number at a float
aligned address and store float at the address.

name is referred to as a variable.

Execution: (-- address -> x)

address -> x is the address of the floating-point number. x has the same data type as was
supplied to variable.

variable (single "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve one cell of data space at a cell aligned address and
store single at the address.

name is referred to as a variable.

Execution: (-- address -> x)

strong.sf

float.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 147

address -> x is the address of the reserved cell. x has the same data type as was supplied to
variable.

variable-definition (caddress -> character unsigned variable-
definition -- 4 th)

Initialize variable-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when
variable-definition is deleted. Assign variable-definition the execution
semantics defined below. Assign variable-definition a name given by the character string
caddress -> character unsigned and return it as 4 th.

Execution: (-- x)

Place x, the first unused address of the data space at the time variable-definition is
created, on the stack.

variable-definition is a constructor of the variable-definition class.

variable-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type variable-
definition.

variable-definition (token caddress -> character unsigned
variable-definition -- 5 th)

Initialize variable-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update latest. Links will be removed when
variable-definition is deleted. Assign variable-definition the execution
semantics specified by token. Assign variable-definition a name given by the character
string caddress -> character unsigned and return it as 5 th.

variable-definition is a constructor of the variable-definition class.

variables (double unsigned "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve two times unsigned cells of data space at a cell
aligned address and store double in each pair of them.

name is referred to as a variable.

Execution: (-- address -> x)

address -> x is the address of the first pair of reserved cells. x has the same data type as was
supplied to variables.

variables (float unsigned "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve data space for unsigned floating-point numbers
at a float aligned address and store float in each of them.

name is referred to as a variable.

strong.sf

float.sf

StrongForth.f 3.1 Glossary: assembler 148

Execution: (-- address -> x)

address -> x is the address of the first floating-point number. x has the same data type as was
supplied to variables.

variables (single unsigned "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve unsigned cells of data space at a cell aligned
address and store single in each of them.

name is referred to as a variable.

Execution: (-- address -> x)

address -> x is the address of the first reserved cell. x has the same data type as was supplied
to variables.

virtual (object-size "<spaces>name" -- 1st)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below. 1st is object-size. An ambiguous condition
exists if virtual is executed in compilation state.

Note that the new definition does have no stack effects by default. Stack effects have to be
specified separately. By providing a stack diagram phrase (... -- ...) immediately
following virtual and the definition name, the new definition is modified to incorporate stack
effects. An ambiguous condition exists if the stack diagram does not contain at least one input
parameter, or if the last input parameter is not a class.

name Execution: (... class -- ...)

Execute the definition whose token is stored in the virtual method table of class, the last input
parameter of name. class is object or a direct or indirect subtype of object. The token is
stored in the virtual method table by a succeeding execution of is. name is called a virtual
method. An exception is thrown if name is executed before it is being assigned an execution
semantics by is.

virtual-index (virtual-definition -- unsigned)

unsigned is the index of the virtual method virtual-definition within the virtual method
table.

virtual-match-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

flag is true if definition is a virtual definition and the selected data type heap matches the
input parameter list of definition. The matching algorithm follows the rules of the StrongForth
data type system.

The selected data type heap depends on state, the attributes of definition and the value of
single:

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 149

single state attributes data type heap

false
false
false
false
false
false
false
false
true
true
true
true
true
true
true
true

false
false
false
false
true
true
true
true
false
false
false
false
true
true
true
true

immediate
execute-only
compile-only

immediate
execute-only
compile-only

immediate
execute-only
compile-only

immediate
execute-only
compile-only

interpreter
interpreter
interpreter
(no match)
compiler
interpreter
(no match)
interpreter
interpreter
interpreter
interpreter
(no match)
compiler
compiler
(no match)
compiler

Note: Provide search-criterion to search in order to find a virtual definition with
matching input parameters according to the rules of the StrongForth data type system.

vocabulary (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type
vocabulary.

vocabulary (vocabulary -- 1st)

Make vocabulary an empty vocabulary and add it as the first item in the hidden vocabulary list.

vocabulary is the constructor of the vocabulary class.

vtable (data-type -- vtable)

vtable is the address of the virtual method table of the object with the data type data-type,
or null if data-type is no object.

vtable (object -- vtable)

vtable is the address of the virtual method table of object.

vtable (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type vtable.

vtable-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 150

flag is true if and only if the virtual method table of definition is equal to the value of
single.

Note: Provide search-criterion to search in order to find a definition with a given name
that is an object of a specific class.

w/o (-- fam)

fam is a constant value for selecting the “write only” file access method when a file is created or
opened.

while (c:sys destination -- c:sys origin 1st 2nd) compile-only

Compilation: Create and initialize c:sys origin and save a copy of the compiler data type heap
in origin. Append the runtime semantics given below to the current definition. 1st 2nd are
equal to c:sys destination. The semantics are incomplete until c:sys origin and 1st
2nd are resolved.

Runtime: (single --)

If single is zero, continue execution at the location specified by the resolution of c:sys.
Otherwise, continue execution.

within (address 1st 1st -- flag)

Perform a comparison of a test value address with a lower limit 1st (second parameter) and an
upper limit 1st (third parameter). flag is true if and only if either (lower limit < upper limit
and (lower limit <= test value and test value < upper limit)) or (lower limit > upper limit and (lower
limit <= test value or test value < upper limit)).

within (integer 1st 1st -- flag)

Perform a comparison of a test value integer with a lower limit 1st (second parameter) and an
upper limit 1st (third parameter). flag is true if and only if either (lower limit < upper limit
and (lower limit <= test value and test value < upper limit)) or (lower limit > upper limit and (lower
limit <= test value or test value < upper limit)).

wordlist ("<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a new empty vocabulary
and add it as the first item in the hidden vocabulary list. Create a definition for name with the
execution semantics defined below. Store the new vocabulary in the data field of the new
definition.

name Execution: Remove the vocabulary from both the context vocabulary list and the hidden
vocabulary list. Make the vocabulary the head of the context vocabulary list. An ambiguous
condition exists if the vocabulary is not included in one of the two vocabulary lists.

words ("<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Send a list of all definitions in the
vocabulary at the head of the context vocabulary list, whose name are identical to name, to the
default output stream. If name is not provided, send a list of all definitions in the vocabulary at the

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 151

head of the context vocabulary list to the default output stream. Each definition occupies a separate
line of text.

write (caddress -> character unsigned file --)

Write unsigned characters from address caddress -> character to the file identified by
file starting at its current position. At the conclusion of the operation, position returns the
next file position after the last character written to the file, and size returns a value greater than or
equal to the value returned by position.

write-line (caddress -> character unsigned file --)

Write unsigned characters from address caddress -> character plus a line terminator
(carriage return and line feed) to the file identified by file starting at its current position. At the
conclusion of the operation, position returns the next file position after the last character written
to the file, and size returns a value greater than or equal to the value returned by position.

xor (data-type data-type -- 1st)

1st is the first data-type with attributes that are the bit-by-bit exclusive-or of the attributes of
both parameters data-type.

xor (single logical -- 1st)

1st is the bit-by-bit exclusive-or of single with logical.

zero (--)

Send a zero character (0) to the default output stream.

zeros (integer --)

If integer is greater than zero, send integer zero characters (0) to the default output stream.

Note: integer is assumed to be a signed number.

[(--) immediate

Interpretation: Stay in interpretation state.

Compilation: Perform the execution semantics given below.

Execution: Enter interpretation state.

['] ("<spaces>name" --) compile-only

Compilation: Skip leading space delimiters. Parse name delimited by a space. Find name. Append
the runtime semantics given below to the current definition. An exception is thrown if name is not
found.

Runtime: (-- definition)

definition is the definition identified by name.

float.sf

float.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 152

[bind] ("<spaces>name1<spaces>name2" --) compile-only

Compilation: Skip leading space delimiters. Parse name1 delimited by a space. Skip spaces. Parse
name2 delimited by a space. Find class name1. Find a virtual method name2 that matches the
compiler data type heap according to the rules of the StrongForth data type system. If no such
virtual definition is found, compile this and try finding name2 again. Append the runtime
semantics of the virtual definition name2 that is bound to the class identified by name1 to the
current definition. An exception is thrown if name1 does not identify a class, if no suitable virtual
definition name2 is found or if name2 is not a virtual definition within the scope of the class
identified by name1.

[char] ("<spaces>name" --) compile-only

Compilation: Skip leading space delimiters. Parse name delimited by a space. Append the runtime
semantics given below to the current definition.

Runtime: (-- character)

character is the value of the first character of name. If the length of name is zero,
character is the space character.

[compile] ("<spaces>name" --) compile-only

Skip leading space delimiters. Parse name delimited by a space. Search the context vocabularies
for a definition with the name name, whose input parameters match the compiler data type heap
according to the rules of the StrongForth data type system. Change the compiler data type heap
according to the stack effect of this definition. Append the semantics of the definition to the current
definition. An exception is thrown if no matching definition is found.

[ctrl] (--) compile-only

Compilation: Skip leading space delimiters. Parse name delimited by a space. An exception is
thrown if name's first character is not a lowercase or uppercase letter. Append the runtime
semantics given below to the current definition.

Runtime: (-- character)

character is the ASCII control character the keyboard generates when typing name's first
character while holding the CTRL key. If the length of name is zero, character is the null
character.

[defined] ("<spaces>name" -- flag) immediate

Skip leading space delimiters. Parse name delimited by a space. flag is true if and only if
name is the name of a definition that can be found by search-context.

[dt] ("<spaces>name" --) compile-only

Compilation: Skip leading space delimiters. Parse name delimited by a space. Append the runtime
semantics given below to the current definition. An exception is thrown if name is not the name of
a data type.

Runtime: (-- data-type)

strong.sf

strong.sf

ascii.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 153

Place data-type, the data type identified by name, on the stack.

[else] (--) immediate

Compilation: Perform the execution semantics given below.

Execution: Skip leading spaces, parse and discard space-delimited words from the parse area,
including nested occurrences of [if] ... [then] and [if] ... [else] ... [then],
until [then] has been parsed and discarded. If the parse area becomes exhausted, it is refilled
with refill.

[if] (single --) immediate

Compilation: Perform the execution semantics given below.

Execution: If any bit of single is not zero, continue execution. Otherwise, skip leading spaces,
parse and discard space-delimited words from the parse area, including nested occurrences of
[if] ... [then] and [if] ... [else] ... [then], until either [else] or
[then] has been parsed and discarded. If the parse area becomes exhausted, it is refilled with
refill.

An ambiguous condition exists if [if] is postponed, or if the end of the input buffer is reached
and cannot be refilled before the terminating [else] or [then] is parsed.

[literal] (--) compile-only

Compilation: Append the runtime semantics given below to the current definition.

Runtime: (x --)

Allocate memory in the data space and save the compound data type of x in it. Append the runtime
semantics given below to the current definition.

Runtime: (-- x)

Place literal x on the stack. x has the same data type and the same value as those at compile time.

[parent] ("<spaces>name" --) compile-only

Skip leading space delimiters. Pares name delimited by a space. Find a virtual definition name that
matches the compiler data type heap according to the rules of the StrongForth data type system. If
no such virtual definition is found, compile this and try finding name again. Append the runtime
semantics of the virtual definition name that is bound to the parent of the class currently being
defined to the current definition. An exception is thrown if no suitable virtual definition name is
found or if name is not a virtual definition within the scope of the parent of the class currently
being defined.

[then] (--) immediate

Compilation: Perform the execution semantics given below.

Execution: Continue execution.

[undefined] ("<spaces>name" -- flag) immediate

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

strong.sf

StrongForth.f 3.1 Glossary: assembler 154

Skip leading space delimiters. Parse name delimited by a space. flag is false if and only if
name is the name of a definition that can be found by search-context.

\ ("ccc\" --) immediate

Compilation: Perform the execution semantics given below.

Execution: Parse and discard ccc delimited by a \ (backslash), but at most until the end the parse
area. The number of characters in ccc may be zero to the number of characters in the parse area.

\" ("ccc<quote>" --) compile-only

Parse ccc delimited by " (quote), using the translation rules below. Append the runtime semantics
given below to the current definition.

Translation rules: Characters are processed one at a time and appended to the compiled string. If
the character is a \ character it is processed by parsing and substituting one or more characters as
follows, where the character after the backslash is case sensitive:

Escape sequence Substitution

\a
\b
\e
\f
\l
\m
\n
\q
\r
\t
\v
\xyy
\z

<bel>
<bs>
<esc>
<ff>
<lf>
<cr><lf>
<cr><lf>
" (quote)
<cr>
<ht>
<vt>
(see below)
<nul>

\xyy performs the following semantics: Parse two hexadecimal digits yy and return the resulting
two-digit ASCII code. An exception is thrown if \x is not followed by two hexadecimal characters.

All other characters remain unchanged.

Runtime: ("ccc<quote>" -- caddress -> character unsigned)

caddress -> character unsigned is the translated string.

\" ("ccc<quote>" -- caddress -> character unsigned)

Parse ccc delimited by " (quote), using the translation rules below.

Translation rules: Characters are processed one at a time and appended to the compiled string. If
the character is a \ character it is processed by parsing and substituting one or more characters as
follows, where the character after the backslash is case sensitive:

Escape sequence Substitution

\a
\b
\e
\f

<bel>
<bs>
<esc>
<ff>

strong.sf

escape.sf

escape.sf

StrongForth.f 3.1 Glossary: assembler 155

\l
\m
\n
\q
\r
\t
\v
\xyy
\z

<lf>
<cr><lf>
<cr><lf>
" (quote)
<cr>
<ht>
<vt>
(see below)
<nul>

\xyy performs the following semantics: Parse two hexadecimal digits yy and return the resulting
two-digit ASCII code. An exception is thrown if \x is not followed by two hexadecimal characters.

All other characters remain unchanged.

caddress -> character unsigned is the translated string.

] (--)

Enter compilation state.

~ (float float float -- flag)

If the third float is positive, flag is true if and only if the absolute value of the first float
minus the second float is less than the third float.

If the third float is zero, flag is true if and only if the first float and the second float are
exactly identical.

If the third float is negative, flag is true if the absolute value of the first float minus the
second float is less than the absolute value of the third float times the sum of the absolute
values of the first float and the second float.

strong.sf

