StrongForth 3.1 Glossary: forth

! (complex address -> 1lst --)

Store complex at address —-> 1st.

! (complex dfaddress -> 1lst --)

Store complex as a complex double-precision floating-point number at dfaddress -> 1st.

! (complex sfaddress -> 1lst --)

Store complex as a complex single-precision floating-point number at sfaddress -> 1st.

! (double address -> 1lst --)

Store double at address -> 1st.

! (float address -> 1lst --)

Store float at address -> 1st.

! (float dfaddress -> 1lst --)

Store f1oat as a double-precision floating-point number at dfaddress -> 1st.

! (float sfaddress -> 1lst --)

Store f1oat as a single-precision floating-point number at sfaddress -> 1lst.

! (single address -> 1st --)

Store single at address -> 1st.

! (single caddress -> 1lst --)

Store single at caddress -> 1st. Only the low-order bits corresponding to character size
are transferred.

" ("ccc<delimiter>" --) compile-only

Compilation: Parse ccc delimited by a quote (™). Allot as many characters in the data-space
memory space as are required for storing ccc. Copy the character string ccc to the allotted
memory area. Append the runtime semantics given below to the current definition. If the data-
space memory space is character aligned when " begins execution, it will remain character
aligned when " finishes execution. An ambiguous condition exists if the first unused address of the
data-space memory space is not character aligned prior to execution of ". An exception is
thrown if the data-space memory space overflows.

StrongForth 3.1 Glossary: forth 1

strongforth.sf

Runtime: Place the copied character string as caddress —-> character unsigned on the
stack.

" ("ccc<delimiter>" -- caddress -> character unsigned)
Parse ccc delimited by a quote (™).

caddress -> character is the address of the first parsed character within the input buffer
and unsigned is the length of the parsed string. If the parse area was empty, unsigned is zero.

", (caddress -> character unsigned --)

Reserve space for a string with unsigned characters in the default memory space and copy the
string caddress -> character unsigned in the default memory space. If the default
memory space is character aligned when ", begins execution, it will remain character aligned
when ", finishes execution. An ambiguous condition exists if the first unused address of the
default memory space is not character aligned prior to execution of ", . An exception is thrown if
the default memory space overflows.

", (caddress -> character unsigned memory-space --)

Reserve space for a string with unsigned characters in memory-space and copy the string
caddress -> character unsignedinmemory-space. [f memory-space is character
aligned when ", begins execution, it will remain character aligned when ", finishes execution. An
ambiguous condition exists if the first unused address of memory—-space is not character aligned
prior to execution of ", . An exception is thrown if memory-space overflows.

(number-double -- 1lst)

Divide number-double by the current number-conversion radix base giving the quotient 1st
and the remainder n (n is the least-significant digit of number—-double). Convert n to external
form and add the resulting character to the beginning of the pictured numeric output string. An
exception is thrown if the transient area used for storing the pictured numeric output overflows.

#> (number-double -- caddress -> character unsigned)

Drop number-double. Make the pictured numeric output string available as caddress ->
character unsigned. A program may replace characters within the string.

#blocks (-- unsigned)

unsigned is the total number of blocks in the block file.

#friends (class-attributes -- caddress -> unsigned)

caddress -> unsigned is the address of an unsigned character-size value indicating the
length in cells of the friend class table of the class associated with class-attributes.

#friends is a member of the class—-attributes class.

#hold (-- caddress -> unsigned)

StrongForth 3.1 Glossary: forth 2

strongforth.sf

strongforth.sf

strongforth.sf

block.sf

caddress —-> unsigned is the address of the offset with respect to 1 ine where the pictured
numeric output string or the next character of a string to be composed starts.

#locals (-- caddress -> unsigned)

caddress —-> unsigned is the address of an unsigned character-size value indicating the
number of cells reserved for locals in the stack frame of the current definition.

#s (number-double -- 1lst)

Convert one digit of number-double according to the rule for #. Continue conversion until the
quotient is zero. 1st is zero.

#vtable (data-type-attributes -- caddress -> unsigned)

caddress -> unsigned is the address of an unsigned character-size value indicating the
length in cells of the virtual method table of the data type associated with data-type-
attributes. If the data type has no virtual method table, this value is always zero.

#vtable is a member of the data-type-attributes class.

' ("<spaces>name" -- definition)

Skip leading space delimiters. Parse name delimited by a space. Search the context vocabularies
for name and return its latest occurrence as definition. An exception is thrown if name is not
found.

'friends (class-attributes -- address -> address ->
class-attributes)

address -> address -> class-attributes is the address of a pointer to the friend
class table of the class associated with class-attributes.

'friends is a member of the class—-attributes class.

'last (class-attributes -- address -> definition)

address -> definition is the address of the most recent protected definition of the class
associated with class-attributes.

'last is a member of the class—attributes class.

'length (structure-attributes -- address -> object-size)

address -> object-size is the address of a cell containing the size in bytes of the structure
associated with structure-attributes.

'length is a member of the structure-attributes class.

'object-size (vtable -- address -> object-size)

StrongForth 3.1 Glossary: forth 3

strongforth.sf

struct.sf

strongforth.sf

address -> object-size is the address of the first entry within the virtual method table
vtable. This entry contains the size in bits of the associated object.

'parent (data-type-attributes -- address -> data-type-attributes
)

address -> data-type-attributes is the address of a cell containing the data-type-
attributes of the parent of the data type associated with data-type-attributes.

'parent is a member of the data-type-attributes class.

'register (data-type-attributes -- caddress -> logical)

caddress —-> logical is the address of a character-size logical value indicating the default
register attributes of the data type associated with data-type-attributes. The default
register has to be considered only when programming in assembler.

'register is a member of the data-type-attributes class.

'size (data-type-attributes -- caddress -> unsigned)

caddress -> unsigned is the address of a character-size unsigned value indicating the size
in address units of the data type associated with data-type-attributes.

'size is a member of the data-type-attributes class.

'virtual (unsigned vtable -- address -> token)

address -> token is the address of the entry with index unsigned within the virtual
method table vtable.

'vocabulary (class-attributes -- address -> vocabulary)

address -> vocabulary is the address of a pointer to the private vocabulary of the class
associated with class-attributes.

'vocabulary is a member of the class—-attributes class.

'vtable (data-type-attributes -- address -> vtable)

address -> vtable isthe address of a pointer to the virtual method table of the data type
associated with data-type-attributes.

'vtable is a member of the data-type-attributes class.

((-- stack-diagram) immediate

Save the value of state. Create an empty stack diagram stack-diagram. Enter interpretation
state.

(starts a stack diagram. Note that the semantics of (is not the same as in Forth-2012.

(+loop) (integer address -- flag)

StrongForth 3.1 Glossary: forth

strongforth.sf

An ambiguous condition exists if the loop control parameters are unavailable. Add integer
address units to the loop index. f1ag is true if and only if the loop index crosses the boundary
between the loop limit minus one and the loop limit. address is a dummy parameter indicating
the data type of the loop index.

(+1loop) is an internal definition compiled by +1o0p.

(+loop) (integer address -> complex -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add integer times
the size of two floating-point numbers in address units to the loop index. f1ag is true if and only
if the loop index crosses the boundary between the loop limit minus one and the loop limit.
address -> complex is a dummy parameter indicating the data type of the loop index.

(+1oop) is an internal definition compiled by +1oop.

(+loop) (integer address -> double -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add integer times
the size of two cells in address units to the loop index. f1ag is true if and only if the loop index
crosses the boundary between the loop limit minus one and the loop limit. address ->

double is a dummy parameter indicating the data type of the loop index.

(+1oop) is an internal definition compiled by +1oop.

(+loop) (integer address -> float -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add integer times
the size of a floating-point number in address units to the loop index. f1ag is true if and only if
the loop index crosses the boundary between the loop limit minus one and the loop limit.

address -> float is a dummy parameter indicating the data type of the loop index.

(+1loop) is an internal definition compiled by +1oop.

(+loop) (integer address -> single -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add integer times
the size of a cell in address units to the loop index. f1ag is true if and only if the loop index
crosses the boundary between the loop limit minus one and the loop limit. address ->

single is a dummy parameter indicating the data type of the loop index.

(+1loop) is an internal definition compiled by +1oop.

(+loop) (integer caddress -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add integer times
the size of a character in address units to the loop index. f1ag is true if and only if the loop
index crosses the boundary between the loop limit minus one and the loop limit. caddressisa
dummy parameter indicating the data type of the loop index.

(+1loop) is an internal definition compiled by +1o0p.

(+loop) (integer dfaddress -- flag)

StrongForth 3.1 Glossary: forth 5

An ambiguous condition exists if the loop control parameters are unavailable. Add integer times
the size of a double-precision floating-point number in address units to the loop index. f1ag is
true if and only if the loop index crosses the boundary between the loop limit minus one and the
loop limit. dfaddress is a dummy parameter indicating the data type of the loop index.

(+1loop) is an internal definition compiled by +1oop.

(+loop) (integer dfaddress -> complex -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add integer times
the size of two double-precision floating-point numbers in address units to the loop index. flag is
true if and only if the loop index crosses the boundary between the loop limit minus one and the
loop limit. dfaddress -> complex is a dummy parameter indicating the data type of the loop
index.

(+1loop) is an internal definition compiled by +1oop.

(+loop) (integer integer -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add the first
integer to the loop index. flag is true if and only if the loop index crosses the boundary
between the loop limit minus one and the loop limit. The second integer is a dummy parameter
indicating the data type of the loop index.

(+1loop) is an internal definition compiled by +1oop.

(+loop) (integer sfaddress -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add integer times
the size of a single-precision floating-point number in address units to the loop index. £1ag is
true if and only if the loop index crosses the boundary between the loop limit minus one and the
loop limit. sfaddress is a dummy parameter indicating the data type of the loop index.

(+1loop) is an internal definition compiled by +1o0p.

(+loop) (integer sfaddress -> complex -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add integer times
the size of two single-precision floating-point numbers in address units to the loop index. f1lag is
true if and only if the loop index crosses the boundary between the loop limit minus one and the
loop limit. sfaddress -> complex is a dummy parameter indicating the data type of the loop
index.

(+1loop) is an internal definition compiled by +1o0p.

(--) (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type (--). This
data type is the qualified token of a definition with the stack diagram (—-).

(--string) (stack-diagram -- 1st)

StrongForth 3.1 Glossary: forth 6

strongforth.sf

strongforth.sf

When used in a stack diagram, specifies an input or output parameter with data type (—-
string). This data type is the qualified token of a definition with the stack diagram (--
caddress -> character unsigned).

(-loop) (integer address -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Subtract integer
address units from the loop index. f1ag is true if and only if the loop index crosses the boundary
between the loop limit minus one and the loop limit. address is a dummy parameter indicating
the data type of the loop index.

(-loop) is an internal definition compiled by -1 o0p.

(-loop) (integer address -> complex -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Subtract integer
times the size of two floating-point numbers in address units from the loop index. f1ag is true if
and only if the loop index crosses the boundary between the loop limit minus one and the loop
limit. address -> complex is a dummy parameter indicating the data type of the loop index.

(-loop) is an internal definition compiled by -1 oop.

(-loop) (integer address -> double -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Subract integer
times the size of two cells in address units from the loop index. f1ag is true if and only if the
loop index crosses the boundary between the loop limit minus one and the loop limit. address -
> double is a dummy parameter indicating the data type of the loop index.

(-loop) is an internal definition compiled by -1 o0p.

(-loop) (integer address -> float -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Subtract integer
times the size of a floating-point number in address units from the loop index. flag is true if and
only if the loop index crosses the boundary between the loop limit minus one and the loop limit.
address -> float is a dummy parameter indicating the data type of the loop index.

(-loop) is an internal definition compiled by -1 o0op.

(-loop) (integer address -> single -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Subtract integer
times the size of a cell in address units from the loop index. £1ag is true if and only if the loop
index crosses the boundary between the loop limit minus one and the loop limit. address ->
single is a dummy parameter indicating the data type of the loop index.

(-loop) is an internal definition compiled by -1 o0p.

(-loop) (integer caddress -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Subtract integer
times the size of a character in address units from the loop index. f1ag is true if and only if the

StrongForth 3.1 Glossary: forth 7

loop index crosses the boundary between the loop limit minus one and the loop limit. caddress
is a dummy parameter indicating the data type of the loop index.

(-loop) is an internal definition compiled by -1 oop.

(-loop) (integer dfaddress -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Subtract integer
times the size of a double-precision floating-point number in address units from the loop index.
flagis true if and only if the loop index crosses the boundary between the loop limit minus one
and the loop limit. dfaddress is a dummy parameter indicating the data type of the loop index.

(-loop) is an internal definition compiled by -1 o0p.

(-loop) (integer dfaddress -> complex -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Subtract integer
times the size of two double-precision floating-point numbers in address units from the loop index.
flagis true if and only if the loop index crosses the boundary between the loop limit minus one
and the loop limit. dfaddress -> complex is a dummy parameter indicating the data type of
the loop index.

(-loop) is an internal definition compiled by -1 oop.

(-loop) (integer integer -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Subtract the first
integer from the loop index. f1ag is true if and only if the loop index crosses the boundary
between the loop limit minus one and the loop limit. The second integer is a dummy parameter
indicating the data type of the loop index.

(-loop) is an internal definition compiled by -1 o0p.

(-loop) (integer sfaddress -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Subtract integer
times the size of a single-precision floating-point number in address units from the loop index.
flagis true if and only if the loop index crosses the boundary between the loop limit minus one
and the loop limit. sfaddress is a dummy parameter indicating the data type of the loop index.

(-loop) is an internal definition compiled by -1 oop.

(-loop) (integer sfaddress -> complex -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Subtract integer
times the size of two single-precision floating-point number in address units from the loop index.
flagis true if and only if the loop index crosses the boundary between the loop limit minus one
and the loop limit. sfaddress -> complex is a dummy parameter indicating the data type of
the loop index.

(-loop) is an internal definition compiled by -1 o0p.

(Obranch) (single --)

StrongForth 3.1 Glossary: forth 8

If single is zero, branch forward or backward within the current definition. Otherwise continue
execution.

Obranch is an internal definition compiled by 1 f, until and of.

(Olbranch) (single --)

If single is zero, perform a long branch forward or backward within the current definition.
Otherwise continue execution.

Olbranch is an internal definition.

(>r) (complex --)
Store complex as a local in the stack frame of the current definition.

(>r) is an internal definition compiled by >r and (local).

(>r) (double --)
Store double as a local in the stack frame of the current definition.

(>r) is an internal definition compiled by >r and (local).

(>r) (float --)
Store £1oat as a local in the stack frame of the current definition.

(>r) is an internal definition compiled by >r and (local).

(>r) (single --)
Store single as a local in the stack frame of the current definition.

(>r) is an internal definition compiled by >r and (local).

(>token) (definition stack-diagram flag -- token)

token is the execution token of definition. An exception is thrown if the stack diagram of
definition does not match stack-diagram according to the rules of the StrongForth data type
system. If definition does not have an execution token or if matching the stack diagrams
requires some register shuffling, a chunk of code is compiled to generate a valid execution token.
This works in either compilation or interpretation state. Delete stack-diagram.

If flag is true or the stack diagrams do not match, the chunk of code is removed before
(>token) returns, and token is zero.

(abort") (single caddress -> character unsigned --)

If single is not equal to zero, copy the string caddress -> character unsignedto
line, fill the remainder of 11ine with spaces and throw an exception with code -2.

(abort”) is an internal definition compiled by abort”.

StrongForth 3.1 Glossary: forth

strongforth.sf

(bind) (class-attributes "<spaces>name" --) strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. Find a virtual definition name that
matches the compiler data type heap according to the rules of the StrongForth data type system. If
no such virtual definition is found, compile this and try finding name again. Append the runtime
semantics of the virtual definition name that is bound to the class associated with class-
attributes to the current definition. An exception is thrown if no suitable virtual definition
name is found or if name is not a virtual definition within the scope of the class associated with
class-attributes. An ambiguous condition exists if (bind) is executed in interpretation
state.

(branch) (--)
Unconditionally branch forward or backward within the current definition.

branch is an internal definition compiled by ahead, again and endof.

(compile) (compiler-workspace definition --)

Compile machine code instructions that perform the semantics of definition into the code-
space memory space, using compiler-workspace.

(compile) is alow-level compilation word.

(compile) is a virtual method of the definition class.

(create) (caddress -> character unsigned --) strongforth.sf

Create a definition with the name specified by the string caddress -> character
unsigned and the execution semantics defined below, and make it the current definition.
create does not allocate memory in the definition's data field.

Execution: Execute the definition. The default execution semantics of the new definition is placing
the address of its data field onto the stack.

Note that the stack diagram of the new definition has to be explicitly specified. The execution
semantics may be extended by does> or ; code.

(do) (address 1lst --)

Store the loop limit address and the loop index 1st as locals in the stack frame of the current
definition.

(do) is an internal definition compiled by do and ?do.

(do) (integer 1lst --)

Store the loop limit integer and the loop index 1st as locals in the stack frame of the current
definition.

(do) is an internal definition compiled by do and ?do.

(does) (code-definition --) strongforth.sf

StrongForth 3.1 Glossary: forth 10

Finish the current definition by specifying code-definition as the definition performing its
runtime code. An exception is thrown if the current definition was not created by create. If the
current definition has no stack diagram, use the stack diagram of code-definition, except for
the last input parameter, as its stack diagram. An exception is thrown if code-definition has
no input parameters or if code—definition has one or more output parameters that reference
the last input parameter.

(does) is an internal definition compiled by does>.

(execute) (token --)
Execute the machine code instructions starting at token.

Note that (execute) does not verify or update the data type heap. (execute) is a low-level
definition that should be used carefully, because it may corrupt the data type system. Especially, it
should not be used in place of execute.

(forget) (definition definition --)

Delete the second definition and all previous definitions in the same vocabulary up to and
excluding the first definition.

(lbranch) (--)
Perform an unconditional long branch forward or backward within the current definition.

lbranch is an internal definition.

(literal) (complex data-type --)

Compile machine code instructions for the complex floating-point literal complex into the
code-space memory space, using the register specification given by data-type.
(literal) is alow-level compilation word. An exception is thrown if the register specification
is inappropriate for a complex floating-point literal.

(literal) (double data-type --)

Compile machine code instructions for the double-cell literal double into the code-space
memory space, using the register specification given by data-type. (literal) is a low-level
compilation word. An exception is thrown if the register specification is inappropriate for a double-
cell literal.

(literal) (float data-type --)

Compile machine code instructions for the floating-point literal £1oat into the code-space
memory space, using the register specification given by data-type. (literal) is alow-level
compilation word. An exception is thrown if the register specification is inappropriate for a
floating-point literal.

(literal) (single data-type --)

StrongForth 3.1 Glossary: forth 11

strongforth.sf

Compile machine code instructions for the single-cell literal single into the code-space
memory space, using the register specification given by data-type. (literal) is a low-level
compilation word. An exception is thrown if the register specification is inappropriate for a single-
cell literal.

(local) (caddress -> character unsigned --)

Execution: If unsigned is non-zero, create a new local whose definition name is given by the
character string caddress -> character unsigned. Ifunsigned is zero, caddress
-> character has no significance.

An ambiguous condition exists if (1ocal) is executed in interpretation state.

The result of executing (1ocal) during compilation is creating a set of named local identifiers,
each of which is a definition that only has execution semantics within the scope of that definition's
source.

Runtime: Push the local's value onto the stack. The value can be either a single-cell item, a double-
cell item or a floating-point number.

(loop) (address -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add one address unit
to the loop index. f1ag is true if and only if the loop index is then equal to the loop limit.
address is a dummy parameter indicating the data type of the loop index.

(loop) is an internal definition compiled by 1oop.

(loop) (address -> complex -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add the size of two
floating-point numbers in address units to the loop index. f1ag is true if and only if the loop
index is then equal to the loop limit. address -> complex is a dummy parameter indicating
the data type of the loop index.

(loop) is an internal definition compiled by 1oop.

(loop) (address -> double -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add the size of two
cells in address units to the loop index. £1ag is true if and only if the loop index is then equal to
the loop limit. address -> double is a dummy parameter indicating the data type of the loop
index.

(loop) is an internal definition compiled by 1oop.

(loop) (address -> float -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add the size of a
floating-point number in address units to the loop index. £1ag is true if and only if the loop
index is then equal to the loop limit. address -> float is a dummy parameter indicating the
data type of the loop index.

(loop) is an internal definition compiled by 1oop.

StrongForth 3.1 Glossary: forth 12

strongforth.sf

(loop) (address -> single -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add the size of a cell
in address units to the loop index. f1ag is true if and only if the loop index is then equal to the
loop limit. address -> single is a dummy parameter indicating the data type of the loop
index.

(loop) is an internal definition compiled by 1oop.

(loop) (caddress -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add the size of a
character in address units to the loop index. f1ag is true if and only if the loop index is then
equal to the loop limit. caddress is a dummy parameter indicating the data type of the loop
index.

(loop) is an internal definition compiled by 1oop.

(loop) (dfaddress -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add the size of a
double-precision floating-point number in address units to the loop index. f1ag is true if and
only if the loop index is then equal to the loop limit. dfaddress is a dummy parameter indicating
the data type of the loop index.

(loop) is an internal definition compiled by 1oop.

(loop) (dfaddress -> complex -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add the size of two
double-precision floating-point numbers in address units to the loop index. f1ag is true if and
only if the loop index is then equal to the loop limit. dfaddress -> complex is a dummy
parameter indicating the data type of the loop index.

(loop) is an internal definition compiled by 1oop.

(loop) (integer -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add one to the loop
index. flag is true if and only if the loop index is then equal to the loop limit. integer is a
dummy parameter indicating the data type of the loop index.

(loop) is an internal definition compiled by 1oop.

(loop) (sfaddress -- flag)

An ambiguous condition exists if the loop control parameters are unavailable. Add the size of a
single-precision floating-point number in address units to the loop index. f1ag is true if and
only if the loop index is then equal to the loop limit. sfaddress is a dummy parameter indicating
the data type of the loop index.

(loop) is an internal definition compiled by 1oop.

(loop) (sfaddress -> complex -- flag)

StrongForth 3.1 Glossary: forth 13

An ambiguous condition exists if the loop control parameters are unavailable. Add the size of two
single-precision floating-point numbers in address units to the loop index. f1ag is true if and
only if the loop index is then equal to the loop limit. sfaddress -> complex is a dummy
parameter indicating the data type of the loop index.

(loop) is an internal definition compiled by 1oop.

(member) (unsigned object-size data-type "<spaces>name" - 2nd)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 2nd is equal to
object-size plus unsigned.

name is referred to as a class member. (members) reserves unsigned bits for class members
of the data type pointed to by dt-here.

Execution: (x —-- addr -> y)

addr -> yisthe address of an array of class members of the object x, that were reserved at the
time name was created. addr is data-type. y is the data type pointed to by dt-here.

(member) is an internal definition used by all versions of members.

(new) (address -> object vtable -> 2nd -- 2nd)

Initialize the virtual method table pointer of an object starting at address —-> object with
vtable -> 2nd, and return the object as 2nd. The initial contents of the object's members are
undefined. An ambiguous condition exists if vtable -> 2nd is not the address of the virtual
method table of the class of object.

(new) (memory-space vtable -> object -- 3rd)

Allot a chunk of contiguous memory space from memory-space for object. Initialize the
virtual method table pointer of the object with vtable -> object, and return the object as
3rd. The initial contents of the allotted object's members are undefined. An exception is thrown if
memory-space does not have enough unused memory cells. An ambiguous condition exists if
vtable -> object is not the address of the virtual method table of the class of ocbject.

(new) (vtable -> object -- 2nd)

Allocate a chunk of contiguous dynamic memory space for object. Initialize the virtual method
table pointer of the object with vtable -> object, and return the object as 2nd. The initial
contents of the allocated object's members are undefined. An exception is thrown if memory
allocation fails. An ambiguous condition exists if vtable -> object is not the address of the
virtual method table of the class of object.

(params>dt) (data-type address -> data-type --)

If data-type does not reference another data type, append data-type to the data type heap
selected by state and finish execution. Otherwise, append the referenced compound data type
from the list of data types starting at address -> data-type to the data type heap selected
by state. If the referenced compound data type contains itself a reference to another compound

StrongForth 3.1 Glossary: forth 14

strongforth.sf

data type, the tail of the referenced compound data type is recursively substituted by the referenced
data type. An exception is thrown if the data type heap overflows.

(quit) (--)

(quit) is executed by quit immediately before entering the interpreter loop. The semantics is
initialized with ignore-friends.

(quit) is a deferred definition.

(replaces) ((--string) caddress -> character unsigned --)

Create a definition with the name specified by the character string caddress -> character
unsigned with the execution semantics defined below. The definition specifies a replacement
string for substitute.

Execution: (—-- caddress -> character unsigned)

caddress -> character unsigned is the text returned by executing (--string) at
execution time.

(replaces) (caddress -> character unsigned caddress -> character
unsigned --)

Create a definition with the name specified by the second character string caddress ->
character unsigned with the execution semantics defined below. The definition specifies a
replacement string for substitute.

Execution: (—- caddress -> character unsigned)

caddress -> character unsigned is a copy of the second character string caddress
-> character unsigned providedto (replaces).

(represent) (caddress -> character unsigned float --)

At caddress -> character, place the character-string external representation of the rounded
integer part of the absolute value of the floating-point number £1oat. The character string consists
of unsigned digits, extended by leading zeros as required. Rounding follows the round to nearest

rule. An ambiguous condition exists if the absolute value of f1oat is bigger than what can be
represented with unsigned digits, or if £1oat is not a valid floating-point number.

(se.) (float signed --)

Send float with a trailing space using exponential notation to the default output stream. The
significand is greater than or equal to 1.0 and less than 10.0 to the power signed, and the decimal
exponent is a multiple of signed:

Exponential notation := <significand><exponent>

<significand> = [-]<digits>.<digits0>

<exponent> = e[-|+]<digit><digit><digit>

<digits> = <digit><digits0>

<digitsO0> = <digit>*

<digit> ={0 |l 1121314151161 71819}

StrongForth 3.1 Glossary: forth 15

strext.sf

strext.sf

float.sf

An ambiguous condition exists if signed is not greater than zero. An exception is thrown if the
value of the number-conversion radix base is not (decimal) 10.

(se.) is an internal definition used by e. and s..

(substitute) (unsigned caddress -> character unsigned -- 1lst 2nd
4 th)

Scan the character string caddress -> character unsigned forthe first delimiter
character. If the name before the de1imiter character is a valid replacement string, send the
replacement to the default output stream and increment the first unsigned, giving 1st.
Otherwise, send a delimiter character and the text up to and including the delimiter
character to the default output stream.

2nd 4this caddress —-> character unsigned, adjusted with /string by the number
of characters up to and including the first delimiter character.

(substitute) is an internal definition used by substitute.

(unsigned--) (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type (unsigned-
—) . This data type is the qualified token of a definition with the stack diagram (unsigned --
).

(value) ("<spaces>name" -- value-definition)

Skip leading space delimiters. Parse name delimited by a space. Create value-definition for
name with the data-space memory space pointer as the address of the value. The data type of
value-definition is the most recently dropped compound data type on the data type heap.

(value) is an internal definition used by all versions of value.

(variable) (data-type '"<spaces>name" -- single-definition)

Skip leading space delimiters. Parse name delimited by a space. Create single-definition
for name with the current data—-space memory space pointer as the value. The data type of
single-definition is composed of data-type as the head and the most recently dropped
compound data type on the data type heap as the tail.

(variable) is an internal definition used by all versions of variables.

(vtable) (-- vtable)

Interpretation: Creates the input parameter with data type vtable -> object for (new).
object is the data type that has most recently been dropped from the interpreter data type heap.
vtable is the virtual method table of object.

Compilation: An ambiguous condition exists if (vtable) is executed in compilation state.

(vtable) is an internal definition used by new.

) (colon-definition stack-diagram -- 1lst)

StrongForth 3.1 Glossary: forth 16

strext.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

Throws an exception if stack-diagram is incomplete. Make stack-diagram the stack
diagram of colon-definition. Delete stack-diagram. Append the input parameters of
colon-definition to the compiler data type heap, starting with the first input parameter. Data
type references within the input parameters are being resolved by recursively appending the
referenced data types onto the compiler data type heap. An exception is thrown if the data type
heap overflows. 1st is colon-definition.

) marks the end of a colon definition's stack diagram.

) (stack-diagram --)

Throws an exception if stack-diagram is incomplete. Make stack-diagram the stack
diagram of the latest definition. Delete stack-diagram.

) marks the end of a definition's stack diagram.

)' (stack-diagram "<spaces>name" -- definition) strongforth.sf

Throws an exception if stack-diagram is incomplete. Skip leading space delimiters. Parse
name delimited by a space. Search the context vocabularies for name with exactly the given stack
diagram and return its latest occurrence as definition. Delete stack-diagram. An
exception is thrown if name with exactly the given stack diagram is not found.

)procreates (stack-diagram '"<spaces>name" --) strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. The definition is a new data type that is a direct subtype of
data type token. It is called a qualified token.

Create a definition execute, whose stack diagram is a copy of stack-diagram, supplemented
with the previously created qualified token as the last input parameter.

) procreates marks the end of a stack diagram.
name Execution: (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with the data type of the
qualified token.

execute Execution: (x0 ... xm name -- y0 ... yn)

Execute the qualified token with data type name. (x0 ... xm -- y0 ... yn) isthe

stack diagram that was supplied to) procreates. x0 ... xmare the input parameters of the

qualified token. y0 ... yn are the output parameters of the qualified token.

* (complex complex -- 1lst) complex.sf

Multiply two complex floating-point numbers complex giving the product 1st. The result has
the same data type as the multiplicand.

* (complex float -- 1lst) complex.sf

Multiply the complex floating-point number complex by the real floating-point number float,
giving the product 1st. The result has the same data type as the multiplicand.

StrongForth 3.1 Glossary: forth 17

* (float float -- 1lst)

Multiply two floating-point numbers £ 1oat giving the product 1st. The result has the same data
type as the multiplicand.

* (integer unsigned -- 1lst)

Multiply integer by unsigned giving the product 1st. Note that the multiplicand can be any
integer (signed or unsigned), while the multiplicator is unsigned. The result has the same data type
as the multiplicand. Since the product of an unsigned number (multiplicand) and a signed number
(multiplicator) should be a signed number, the two operands have to be swapped in this case.

* (integer-double unsigned -- 1lst)

Multiply integer-double by unsigned giving the double-precision product 1st. Note that
the multiplicand can be any integer (signed or unsigned), while the multiplicator is unsigned. The
result has the same data type as the multiplicand.

* (signed signed -- 1st)

Multiply two signed numbers giving the product 1st. The result has the same data type as the
multiplicand.

* (signed-double signed -- 1lst)

Multiply signed-double by signed giving the double-precision product 1st. The result has
the same data type as the multiplicand.

** (complex complex -- 1lst) complex.sf

Raise the first complex to the power given by the second complex, giving 1st. An ambiguous
condition exists if the quotient lies outside of the range of floating-point numbers. This operation is
based on complex floating-point numbers.

** (float float -- 1lst)

Raise the first f1oat to the power given by the second f1loat, giving 1st. An ambiguous
condition exists if the second f1oat is negative, or if the quotient lies outside of the range of a
floating-point number.

*/ (signed signed signed -- 1lst)

Multiply the first signed by the second signed producing an intermediate signed double-
precision result. Divide the intermediate result by the third signed giving the signed single-
precision quotient 1 st. An exception is thrown if the third signed is zero. An ambiguous
condition exists if the quotient 1 st lies outside the range of a signed single-precision number.

*/ (signed-double signed signed -- 1lst) strongforth.sf

Multiply signed-double by the first signed producing an intermediate signed triple-
precision result. Divide the intermediate result by the second signed giving the signed double-

StrongForth 3.1 Glossary: forth 18

precision quotient 1st. An exception is thrown if the second signed is zero. An ambiguous
condition exists if the quotient 1 st lies outside of the range of a signed double-precision number.

*/ (unsigned unsigned unsigned -- 1lst)

Multiply the first unsigned by the second unsigned producing an intermediate unsigned
double-precision result. Divide the intermediate result by the third unsigned giving the unsigned
single-precision quotient 1st. An exception is thrown if the third unsigned is zero. An
ambiguous condition exists if the quotient 1 st lies outside the range of an unsigned single-
precision number.

*/ (unsigned-double unsigned unsigned -- 1lst)

Multiply unsigned-double by the first unsigned producing an intermediate unsigned triple-
precision result. Divide the intermediate result by the second unsigned giving the unsigned
double-precision quotient 1st. An exception is thrown if the second unsigned is zero. An
ambiguous condition exists if the quotient 1 st lies outside of the range of an unsigned double-
precision number.

*/mod (signed signed signed -- 3rd 1lst)

Multiply the first signed by the second signed producing an intermediate signed double-
precision result. Divide the intermediate result by the third signed giving the signed single-
precision remainder 3rd and the signed single-precision quotient 1st. An exception is thrown if
the third signed is zero. An ambiguous condition exists if the quotient 1 st lies outside the range
of a signed single-precision number.

*/mod (signed-double signed signed -- 3rd 1lst)

Multiply signed-double by the first signed producing an intermediate signed triple-
precision result. Divide the intermediate result by the second signed giving the signed single-
precision remainder 3rd and the signed double-precision quotient 1st. An exception is thrown if
the second signed is zero. An ambiguous condition exists if the quotient 1 st lies outside of the
range of a signed double-precision number.

*/mod (unsigned unsigned unsigned -- 3rd 1lst)

Multiply the first unsigned by the second unsigned producing an intermediate unsigned
double-precision result. Divide the intermediate result by the third unsigned giving the unsigned
single-precision remainder 3rd and the unsigned single-precision quotient 1st. An exception is
thrown if the third unsigned is zero. An ambiguous condition exists if the quotient 1st lies
outside the range of an unsigned single-precision number.

*/mod (unsigned-double unsigned unsigned -- 3rd 1lst)

Multiply unsigned-double by the first unsigned producing an intermediate unsigned triple-
precision result. Divide the intermediate result by the second unsigned giving the unsigned
single-precision remainder 3rd and the unsigned double-precision quotient 1 st. An exception is
thrown if the second unsigned is zero. An ambiguous condition exists if the quotient 1st lies
outside of the range of an unsigned double-precision number.

StrongForth 3.1 Glossary: forth 19

strongforth.sf

*10*n (float signed -- 1lst)

1st is equal to £1oat multiplied by 10 raised to the power of signed. signed may be
positive, negative, or zero.

+ (address -> complex integer -- 1lst)

Add integer to address -> complex, giving the sum 1st. Since address points to a
complex floating-point number, integer is multiplied with the number of address units per
complex floating-point number before the actual addition takes place.

+ (address -> double integer -- 1lst)

Add integer to address —-> double, giving the sum 1st. Since address points to a
double cell, integer is multiplied with the number of address units per double cell before the
actual addition takes place.

+ (address -> float integer -- 1lst)

Add integer to address -> float, giving the sum 1st. Since address points to a
floating-point number, integer is multiplied with the number of address units per floating-point
number before the actual addition takes place.

+ (address -> single integer -- 1lst)

Add integer to address -> single, giving the sum 1st. Since address points to a cell,
integer is multiplied with the number of address units per cell before the actual addition takes
place.

+ (address integer -- 1lst)

Add integer to address, giving the sum 1st.

+ (caddress integer -- 1lst)

Add integer to caddress, giving the sum 1st. Since caddress points to an item of
character size, integer is multiplied with the number of address units per character before the
actual addition takes place.

+ (complex complex -- 1lst)

Add two complex floating-point numbers complex giving the sum 1st. The result has the same
data type as the first operand.

+ (complex float -- 1lst)

Add the real floating-point number f£1oat to the complex floating-point number complex,
giving the sum 1st. The result has the same data type as complex.

StrongForth 3.1 Glossary: forth 20

float.sf

complex.sf

complex.sf

+ (dfaddress -> complex integer -- 1lst)

Add integertodfaddress -> complex, giving the sum 1st. Since dfaddress ->
complex points to a complex double-precision floating-point number, integer is multiplied
with the number of address units per complex double-precision floating-point number before the
actual addition takes place.

+ (dfaddress integer -- 1lst)

Add integer to dfaddress, giving the sum 1st. Since dfaddress points to a double-
precision floating-point number, integer is multiplied with the number of address units per
double-precision floating-point number before the actual addition takes place.

+ (float float -- 1st)
Add the second float to the first f1oat, giving the sum 1st.

+ (integer integer -- 1lst)

Add the second integer to the first integer, giving the sum 1st.

+ (integer-double integer -- 1lst)

Add integer with zero extension to integer-double, giving the double-precision sum 1st.

+ (integer-double integer-double -- 1lst)

Add the second integer-double to the first integer-double, giving the sum 1st.

+ (integer-double signed -- 1lst)

Add signed with sign extension to integer—-double, giving the double-precision sum 1st.

+ (sfaddress -> complex integer -- 1lst)

Add integer to sfaddress -> complex, giving the sum 1st. Since sfaddress ->
complex points to a complex single-precision floating-point number, integer is multiplied
with the number of address units per complex single-precision floating-point number before the
actual addition takes place.

+ (sfaddress integer -- 1lst)

Add integer to sfaddress, giving the sum 1st. Since sfaddress points to a single-
precision floating-point number, integer is multiplied with the number of address units per
single-precision floating-point number before the actual addition takes place.

+! (complex address -> complex --)

Add complex to the complex floating-point number stored at address —-> complex.

StrongForth 3.1 Glossary: forth 21

+! (complex dfaddress -> complex —--)

Add complex to the complex double-precision floating-point number stored at dfaddress —->
complex.

+! (complex sfaddress -> complex --)

Add complex to the complex single-precision floating-point number stored at sfaddress ->
complex.

+! (float address -> float --)

Add float to the floating-point number stored at address -> float.

+! (float dfaddress -> float --)

Add float to the double-precision floating-point number stored at dfaddress -> float.

+! (float sfaddress -> float --)

Add float to the single-precision floating-point number stored at sfaddress -> float.

+! (integer address -> address --)

Add integer to the address stored at address -> address.

+! (integer address -> address -> complex --)

Add integer to the address stored at address -> address -> complex. Since the
address points to a complex floating-point number, integer is multiplied with the number of
address units per complex floating-point number before the actual addition takes place.

+! (integer address -> address -> double --)

Add integer to the address stored at address -> address -> double. Since the
address points to a double cell, integer is multiplied with the number of address units per double
cell before the actual addition takes place.

+! (integer address -> address -> float --)

Add integer to the address stored at address -> address -> float. Since the address
points to a floating-point number, integer is multiplied with the number of address units per
floating-point number before the actual addition takes place.

+! (integer address -> address -> single --)

Add integer to the address stored at address -> address -> single. Since the
address points to a cell, integer is multiplied with the number of address units per cell before the
actual addition takes place.

StrongForth 3.1 Glossary: forth 22

+! (integer address -> caddress --)

Add integer to the address stored at address -> caddress. Since the address points to an
item of character size, integer is multiplied with the number of address units per character
before the actual addition takes place.

+! (integer address -> dfaddress --)

Add integer to the address stored at address -> dfaddress. Since the address points to a
double-precision floating-point number, integer is multiplied with the number of address units
per double-precision floating-point number before the actual addition takes place.

+! (integer address -> dfaddress -> complex --)

Add integer to the address stored at address -> dfaddress -> complex. Since the
address points to a complex double-precision floating-point number, integer is multiplied with
the number of address units per complex double-precision floating-point number before the actual
addition takes place.

+! (integer address -> integer --)

Add integer to the integer number stored at address -> integer.

+! (integer address -> integer-double --)

Add integer with zero extension to the double-precision integer number stored at address -
> integer-double.

+! (integer address -> sfaddress --)

Add integer to the address stored at address -> sfaddress. Since the address points to a
single-precision floating-point number, integer is multiplied with the number of address units
per single-precision floating-point number before the actual addition takes place.

+! (integer address -> sfaddress -> complex --)

Add integer to the address stored at address -> sfaddress -> complex. Since the
address points to a complex single-precision floating-point number, integer is multiplied with
the number of address units per complex single-precision floating-point number before the actual
addition takes place.

+! (integer caddress -> integer --)

Add integer to the character size integer number stored at caddress -> integer.

+! (integer-double address -> integer-double --)

Add integer-double to the double-precision integer number stored at address ->
integer-double.

StrongForth 3.1 Glossary: forth 23

+! (signed address -> integer-double --)

Add signed with sign extension to the double-precision integer number stored at address ->
integer-double.

+loop (do-destination --) compile-only

Compilation: Append the runtime semantics given below to the current definition. Resolve both the
forward references and the backward reference of do-destination. Delete the loop index 1.
Rename the loop index 7, if it exists, to i. An exception is thrown if the contents of the compiler
data type heap do not exactly match the copy that was saved when do-destination was
created.

Runtime: (integer --)

An ambiguous condition exists if the loop control parameters are unavailable. Add integer to
the loop index. If the loop index crosses the boundary between the loop limit minus one and the
loop limit, discard the current loop control parameters and continue execution. Otherwise, branch
to the beginning of the loop.

Note: +1oop takes regard of the data type of the loop index.

If the loop index is an address of a single cell, integer is multiplied with the size of a single cell
in address units before it is added to the loop index.

If the loop index is an address of a double cell, integer is multiplied with the size of a double
cell in address units before it is added to the loop index.

If the loop index is a character address, integer is multiplied with the size of a character in
address units before it is added to the loop index.

If the loop index is an address of a floating-point number, integer is multiplied with the size of a
floating-point number in address units before it is added to the loop index.

If the loop index is an address of a single-preciscion floating-point number, integer is multiplied
with the size of a single-preciscion floating-point number in address units before it is added to the
loop index.

If the loop index is an address of a double-preciscion floating-point number, integer is
multiplied with the size of a double-preciscion floating-point number in address units before it is
added to the loop index.

If the loop index is an address of a complex floating-point number, integer is multiplied with
the size of a complex floating-point number in address units before it is added to the loop index.

If the loop index is an address of a complex single-preciscion floating-point number, integer is
multiplied with the size of a complex single-preciscion floating-point number in address units
before it is added to the loop index.

If the loop index is an address of a complex double-preciscion floating-point number, integer is
multiplied with the size of a complex double-preciscion floating-point number in address units
before it is added to the loop index.

;, (complex --)

Reserve space for two floating-point numbers in the default memory space and store complex in
it. An ambiguous condition exists if the first unused address of the default memory space is not
aligned prior to execution of , . An exception is thrown if the default memory space overflows.

StrongForth 3.1 Glossary: forth 24

strongforth.sf

, (complex memory-space --)

Reserve space for two floating-point numbers in memory-space and store complex in it. An
ambiguous condition exists if the first unused address of memory-space is not aligned prior to
execution of , . An exception is thrown if memory-space overflows.

, (double --)

Reserve two cells in the default memory space and store double in the two cells. If the first
unused address of the default memory space is aligned prior to execution of , , it will remain
aligned when , finishes execution. An ambiguous condition exists if the first unused address of the
default memory space is not aligned prior to execution of , . An exception is thrown if the default
memory space overflows.

, (double memory-space --)

Reserve two cells in memory-space and store double in the two cells. If the first unused
address of memory-space is aligned prior to execution of , , it will remain aligned when ,
finishes execution. An ambiguous condition exists if the first unused address of memory-space
is not aligned prior to execution of , . An exception is thrown if memory-space overflows.

, (float --)

Reserve space for one floating-point number in the default memory space and store f1oat in it.
An ambiguous condition exists if the first unused address of the default memory space is not
aligned prior to execution of , . An exception is thrown if the default memory space overflows.

, (float memory-space --)

Reserve space for one floating-point number in memory-space and store f1oat in it. An
ambiguous condition exists if the first unused address of memory-space is not aligned prior to
execution of , . An exception is thrown if memory-space overflows.

, (single --)

Reserve one cell in the default memory space and store single in the cell. If the first unused
address of the default memory space is aligned prior to execution of , , it will remain aligned when
, finishes execution. An ambiguous condition exists if the first unused address of the default
memory space is not aligned prior to execution of , . An exception is thrown if the default memory
space overflows.

, (single memory-space --)

Reserve one cell in memory-space and store single in the cell. If the first unused address of
memory-space is aligned prior to execution of , , it will remain aligned when , finishes
execution. An ambiguous condition exists if the first unused address of memory-space is not
aligned prior to execution of , . An exception is thrown if memory-space overflows.

- (address -> complex 1lst -- signed)

StrongForth 3.1 Glossary: forth 25

Subtract 1st from address -> complex, giving an intermediate difference. Since address
-> complex points to a complex floating-point number, the result signed is equal to the
difference divided by the number of address units per complex floating-point number.

- (address -> complex integer -- 1lst)

Subtract integer from address -> complex, giving the difference 1st. Since address
points to a complex floating-point number, integer is multiplied with the number of address
units per complex floating-point number before the actual subtraction takes place.

- (address -> double 1st -- signed)

Subtract 1st from address -> double, giving an intermediate difference. Since address
-> double points to a double cell, the result signed is equal to the difference divided by the
number of address units per double cell.

- (address -> double integer -- 1lst)

Subtract integer from address -> double, giving the difference 1st. Since address
points to a double cell, integer is multiplied with the number of address units per double cell
before the actual subtraction takes place.

- (address -> float 1lst -- signed)

Subtract 1st from address -> float, giving an intermediate difference. Since address -
> float points to a floating-point number, the result signed is equal to the difference divided
by the number of address units per floating-point number.

- (address -> float integer -- 1lst)

Subtract integer from address -> float, giving the difference 1st. Since address
points to a floating-point number, integer is multiplied with the number of address units per
floating-point number before the actual subtraction takes place.

- (address -> single 1lst -- signed)

Subtract 1st from address —> single, giving an intermediate difference. Since address
-> single points to a cell, the result signed is equal to the difference divided by the number
of address units per cell.

- (address -> single integer -- 1lst)

Subtract integer from address -> single, giving the difference 1st. Since address
points to a cell, integer is multiplied with the number of address units per cell before the actual
subtraction takes place.

- (address 1st -- signed)

Subtract 1st from address, giving signed.

StrongForth 3.1 Glossary: forth 26

- (address integer -- 1st)

Subtract integer from address, giving the difference 1st.

- (caddress 1lst -- signed)

Subtract 1st from caddress, giving an intermediate difference. Since caddress points to a
character-size item, the result signed is equal to the difference divided by the number of address
units per character.

- (caddress integer -- 1lst)

Subtract integer from caddress, giving the difference 1st. Since caddress points to a
character, integer is multiplied with the number of address units per character before the actual
subtraction takes place.

- (complex complex -- 1lst) complex.sf

Subtract the second complex from the first complex, giving the difference 1st.

- (complex float -- 1st) complex.sf

Subtract the real floating-point number f1oat from the complex floating-point number
complex, giving the difference 1 st. The result has the same data type as complex.

- (dfaddress -> complex lst -- signed)

Subtract 1st from dfaddress -> complex, giving an intermediate difference. Since
dfaddress -> complex points to a complex double-precision floating-point number, the
result signed is equal to the difference divided by the number of address units per complex
double-precision floating-point number.

- (dfaddress -> complex integer -- 1lst)

Subtract integer from dfaddress -> complex, giving the difference 1st. Since
dfaddress -> complex points to a complex double-precision floating-point number,
integer is multiplied with the number of address units per complex double-precision floating-
point number before the actual subtraction takes place.

- (dfaddress 1st -- signed)

Subtract 1st from dfaddress, giving an intermediate difference. Since dfaddress points to a
double-precision floating-point number, the result signed is equal to the difference divided by the
number of address units per double-precision floating-point number.

- (dfaddress integer -- 1st)

Subtract integer from dfaddress, giving the difference 1st. Since dfaddress points to a
double-precision floating-point number, integer is multiplied with the number of address units
per double-precision floating-point number before the actual subtraction takes place.

StrongForth 3.1 Glossary: forth 27

- (float float -- 1st)

Subtract the second £1oat from the first f1oat, giving the difference 1st.

- (integer integer -- 1lst)

Subtract the second integer from the first integer, giving the difference 1st.

- (integer-double integer -- 1lst)

Subtract integer with zero extension from integer-double, giving the double-precision
difference 1st.

- (integer-double integer-double -- 1lst)

Subtract the second integer-double from the first integer-double, giving the difference
1st.

- (integer-double signed -- 1lst)

Subtract signed with sign extension from integer-double, giving the double-precision
difference 1st.

- (sfaddress -> complex lst -- signed)

Subtract 1st from sfaddress -> complex, giving an intermediate difference. Since
sfaddress -> complex points to a complex single-precision floating-point number, the
result signed is equal to the difference divided by the number of address units per complex
single-precision floating-point number.

- (sfaddress -> complex integer -- 1lst)

Subtract integer from sfaddress -> complex, giving the difference 1st. Since
sfaddress -> complex points to a complex single-precision floating-point number,
integer is multiplied with the number of address units per complex single-precision floating-
point number before the actual subtraction takes place.

- (sfaddress 1st -- signed)

Subtract 1st from sfaddress, giving an intermediate difference. Since sfaddress points to a
single-precision floating-point number, the result signed is equal to the difference divided by the
number of address units per single-precision floating-point number.

- (sfaddress integer -- 1st)

Subtract integer from sfaddress, giving the difference 1st. Since sfaddress points to a
single-precision floating-point number, integer is multiplied with the number of address units
per single-precision floating-point number before the actual subtraction takes place.

StrongForth 3.1 Glossary: forth 28

-! (complex address -> complex --)

Subtract complex from the complex floating-point number stored at address -> complex.

-! (complex dfaddress -> complex --)

Subtract complex from the complex double-precision floating-point number stored at
dfaddress -> complex.

-! (complex sfaddress -> complex --)

Subtract complex from the complex single-precision floating-point number stored at
sfaddress -> complex.

-! (float address -> float --)

Subtract £1oat from the floating-point number stored at address -> float.

-! (float dfaddress -> float --)

Subtract £1oat from the double-precision floating-point number stored at dfaddress ->
float.

-! (float sfaddress -> float --)

Subtract £1oat from the single-precision floating-point number stored at sfaddress ->
float.

-! (integer address -> address --)

Subtract integer from the address stored at address -> address.

-! (integer address -> address -> complex --)

Subtract integer from the address stored at address -> address -> complex. Since
the address points to a complex floating-point number, integer is multiplied with the number of
address units per complex floating-point number before the actual subtraction takes place.

-! (integer address -> address -> double --)

Subtract integer from the address stored at address -> address -> double. Since the
address points to a double cell, integer is multiplied with the number of address units per double
cell before the actual subtraction takes place.

-! (integer address -> address -> float --)

Subtract integer from the address stored at address -> address -> float. Since the
address points to a floating-point number, integer is multiplied with the number of address units
per floating-point number before the actual subtraction takes place.

StrongForth 3.1 Glossary: forth 29

-! (integer address -> address -> single --)

Subtract integer from the address stored at address -> address -> single. Since the
address points to a cell, integer is multiplied with the number of address units per cell before the
actual subtraction takes place.

-! (integer address -> caddress --)

Subtract integer from the address stored at address -> caddress. Since the address
points to a character, integer is multiplied with the number of address units per character before
the actual subtraction takes place.

-! (integer address -> dfaddress --)

Subtract integer from the address stored at address -> dfaddress. Since the address
points to a double-precision floating-point number, integer is multiplied with the number of
address units per double-precision floating-point number before the actual subtraction takes place.

-! (integer address -> dfaddress -> complex --)

Subtract integer from the address stored at address -> dfaddress -> complex. Since
the address points to a complex double-precision floating-point number, integer is multiplied
with the number of address units per complex double-precision floating-point number before the
actual subtraction takes place.

-! (integer address -> integer --)

Subtract integer from the integer number stored at address -> integer.

-! (integer address -> integer-double --)

Subtract integer with zero extension from the double-cell integer number stored at address -
> integer-double.

-! (integer address -> sfaddress --)

Subtract integer from the address stored at address -> sfaddress. Since the address
points to a single-precision floating-point number, integer is multiplied with the number of
address units per single-precision floating-point number before the actual subtraction takes place.

-! (integer address -> sfaddress -> complex --)

Subtract integer from the address stored at address -> sfaddress -> complex. Since
the address points to a complex single-precision floating-point number, integer is multiplied
with the number of address units per complex single-precision floating-point number before the
actual subtraction takes place.

-! (integer caddress -> integer --)

Subtract integer from the character size integer number stored at caddress -> integer.

StrongForth 3.1 Glossary: forth 30

-! (integer-double address -> integer-double --)

Subtract integer-double from the double-precision integer number stored at address ->
integer-double.

-! (signed address -> integer-double --)

Subtract signed with sign extension from the double-precision integer number stored at
address -> integer-double.

-- (stack-diagram -- 1lst)

Set a private flag in stack-diagram. From now on, all appended data types are output parameters.
1st is stack-diagram. An exception is thrown if —- is preceded by —> or if it is used more
than once within the same stack diagram.

—— is used in a stack diagram to separate input and output parameters.

-> (stack-diagram -- 1lst)

Add the prefix attribute to the data-type most recently appended to stack-diagram. 1st is
stack-diagram. An exception is thrown if stack-diagram is still empty, if —> is preceeded
by —-, if the prefix attribute is already set or if the most recently appended data type is a reference.

-> is used in a stack diagram to create compound data types as input or output parameters.

-> (x "<spaces>name" -- y) immediate

Skip leading space delimiters. Parse name delimited by a space. Convert x to y, where x is any
data type and y is a compound data type created by appending the basic data type identified by
name to x. An exception is thrown if name is not the name of a data type.

-carry? (-- flag)

flagis true if and only if the directly preceding operation caused the processor’s carry flag to
be cleared.

-i (-- complex)

complex is the complex floating-point literal with 0e0 as the real part and —1e0 as the
imaginary part.

-i* (complex -- 1lst)

Multiply complex by the negative value of the imaginary unit i, giving 1st.

-leading (caddress -> character unsigned -- 1lst 3rd)

If unsigned is greater than zero, 3rd is equal to unsigned less the number of spaces at the
beginning of the character string specified by caddress -> character unsigned, and

StrongForth 3.1 Glossary: forth 31

complex.sf

complex.sf

strongforth.sf

1st is equal to caddress —-> character plus the number of spaces at the beginning of the
character string. If unsigned is zero, 3rd is zero and 1st is equal to caddress ->
character.

-leading (caddress -> character unsigned 2nd -- 1st 3rd)

If unsigned is greater than zero, 3rd is equal to unsigned less the number of characters equal
to 2nd at the beginning of the character string specified by caddress -> character
unsigned, and 1st is equal to caddress -> character plus the number of characters
equal to 2nd at the beginning of the character string. If unsigned is zero, 3rd is zero and 1st is
equal to caddress -> character.

-loop (do-destination --) compile-only

Compilation: Append the runtime semantics given below to the current definition. Resolve both the
forward references and the backward reference of do-destination. Delete the loop index 1.
Rename the loop index 7, if it exists, to i. An exception is thrown if the contents of the compiler
data type heap do not exactly match the copy that was saved when do-destination was
created.

Runtime: (integer --)

An ambiguous condition exists if the loop control parameters are unavailable. Subtract integer
from the loop index. If the loop index crosses the boundary between the loop limit minus one and
the loop limit, discard the current loop control parameters and continue execution. Otherwise,
branch to the beginning of the loop.

Note: +1oop takes regard of the data type of the loop index.

If the loop index is an address of a single cell, integer is multiplied with the size of a single cell
in address units before it is subtracted from the loop index.

If the loop index is an address of a double cell, integer is multiplied with the size of a double
cell in address units before it is subtracted from the loop index.

If the loop index is a character address, integer is multiplied with the size of a character in
address units before it is subtracted from the loop index.

If the loop index is an address of a floating-point number, integer is multiplied with the size of a
floating-point number in address units before it is subtracted from the loop index.

If the loop index is an address of a single-preciscion floating-point number, integer is multiplied
with the size of a single-preciscion floating-point number in address units before it is subtracted
from the loop index.

If the loop index is an address of a double-preciscion floating-point number, integer is
multiplied with the size of a double-preciscion floating-point number in address units before it is
subtracted from the loop index.

If the loop index is an address of a complex floating-point number, integer is multiplied with
the size of a complex floating-point number in address units before it is subtracted from the loop
index.

If the loop index is an address of a complex single-preciscion floating-point number, integer is
multiplied with the size of a complex single-preciscion floating-point number in address units
before it is subtracted from the loop index.

StrongForth 3.1 Glossary: forth 32

strongforth.sf

strongforth.sf

If the loop index is an address of a complex double-preciscion floating-point number, integer is
multiplied with the size of a complex double-preciscion floating-point number in address units
before it is subtracted from the loop index.

-overflow? (-- flag)

flagis true if and only if the directly preceding operation caused the processor’s overflow flag
to be cleared.

-trailing (caddress -> character unsigned -- 1lst 3rd)

1st is equal to caddress -> character. [funsigned is greater than zero, 3rd is equal to
unsigned less the number of spaces at the end of the character string specified by caddress -
> character unsigned. If unsigned is zero or the entire string consists of spaces, 3rd is
ZerO0.

-trailing (caddress -> character unsigned 2nd -- 1lst 3rd)

1st is equal to caddress -> character. [funsigned is greater than zero, 3rd is equal to
unsigned less the number of characters equal to 2nd at the end of the character string specified
by caddress -> character unsigned. Ifunsigned is zero or the entire string consists
of characters equal to 2nd, 3rd is zero.

(character --)

If character is a graphic character in the ASCII character set, send character to the default
output stream. The effect of . for all other values of character is undefined.

(complex --)

Send the real part and the imaginary part of complex with a trailing space using fixed-point
notation to the default output stream:

fixed-point notation := <re> + <im> i

<re> = <significand>

<im> = <significand>

<significand> = [-]<digits>.<digits0>

<digits> = <digit><digits0>

<digitsO0> = <digit>*

<digit> ={O0 | 12| 2|31 415161 71181 9}

An exception is thrown if the value of the number-conversion radix base is not (decimal) 10.

(data-type --)

Send the name of data-type as a character string plus a trailing space to the default output
stream. If data-type is a reference, send 1st, 2nd, 3rd or n th, depending on the value n of the
offset. An exception is thrown if data-type is not a valid data type.

(definition --)

Send the name, the stack diagram and the attributes of definition to the default output stream.

StrongForth 3.1 Glossary: forth 33

strongforth.sf

strongforth.sf

strongforth.sf

complex.sf

strongforth.sf

strongforth.sf

(double --) strongforth.sf

Send double as an unsigned double-precision number in free field format to the default output
stream.

(flag --) strongforth.sf

If flagis true, send t rue and a trailing space to the default output stream. If £1ag is false, Send
false and a trailing space to the default output stream.

(float --) float.sf

Send float with a trailing space using fixed-point notation to the default output stream:

fixed-point notation := <significand>

<significand> = [-]<digits>.<digits0>

<digits> = <digit><digits0>

<digits0> = <digit>*

<digit> ={0 |l 1T 12131415161 7181]29:}

An exception is thrown if the value of the number-conversion radix base is not (decimal) 10.

(signed --) strongforth.sf

Send signed as a signed number in free field format to the default output stream.

(signed-double --) strongforth.sf

Send signed-double as a signed double-precision number in free field format to the default
output stream.

(single --) strongforth.sf

Send single as an unsigned number in free field format to the default output stream.

(vocabulary --) strongforth.sf

If vocabulary is the protected vocabulary of a class, send the class name plus a trailing space to the
default output stream. Otherwise, send the name of the vocabulary to the default output stream.

." ("ccec<quote>" --) compile-only strongforth. sf

Parse ccc delimited by " (quote). Append the runtime semantics given below to the current
definition.

Runtime: Send ccc to the default output stream.

." ("ccc<quote>" --) execute-only strongforth.sf

Parse ccc delimited by " (quote). Send ccc to the default output stream.

StrongForth 3.1 Glossary: forth 34

.(("ccc<right-paren>" --) compile-only

Parse ccc delimited by) (right parenthesis). Append the runtime semantics given below to the
current definition.

Runtime: Send ccc to the default output stream.

.(("ccec<right-paren>" --) execute-only

Parse ccc delimited by) (right parenthesis). Send ccc to the default output stream.

.addr (address --)

Send address in an eight-digit hexadecimal format with a trailing colon to the default output
stream.

.attributes (definition --)

If definition has been marked as immediate, send immediate plus a trailing space to the
default output stream.

If definition has been marked as execute-only, send execute-only plus a trailing space to

the default output stream.

If definition has been marked as compile-only, send compile-only plus a trailing space to

the default output stream.

.byte (single --)

Send the least significant byte of single in a two-digit hexadecimal format with no trailing space

to the default output stream.

.cell (single --)

Send single in an eight-digit hexadecimal format with no trailing space to the default output
stream.

.error (signed --)

Send the error message Exrror nnn to the default output stream, where nnn is the decimal value

of signed as a signed number in free field format.

.exponent (signed --)

Send signed as a floating point exponent in the format e snnn to the default output stream,

where s is the sign (+ or —) and nnn is the absolute value of signed represented as a three-digit

decimal value.

.message (signed --)

Send an error message to the default output stream. If signed is between -399 and 0, obtain the

message from the text file StrongForth.msg. If signed is between -511 and -400, obtain the

StrongForth 3.1 Glossary: forth

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

float.sf

strongforth.sf

MSVCRT system error message with the index |signed|-400. An exception is thrown if signed
is below -511 or greater than zero.

.name (definition --)

If definition has a name, send the name plus a trailing space to the default output stream.

.params (address -> data-type unsigned --)

Send a list of unsigned data types starting at address —-> data-type, including prefix and
reference attributes, to the default output stream.

.prefix (data-type --)

If data-type has the prefix attribute, send —> plus a trailing space to the default output stream.

.r (double integer --)

Send double as an unsigned double-precision number right aligned in a field integer
characters wide to the default output stream. integer is assumed to be a signed number. If
integer is not positive or the number of characters required is greater than integer, all digits
are sent with no leading spaces in a field as wide as necessary.

.r (signed integer --)

Send signed as a signed number right aligned in a field integer characters wide to the default
output stream. integer is assumed to be a signed number. If integer is not positive or the
number of characters required is greater than integer, all digits are sent with no leading spaces
in a field as wide as necessary.

.r (signed-double integer --)

Send signed-double as a signed double-precision number right aligned in a field integer
characters wide to the default output stream. integer is assumed to be a signed number. If
integer is not positive or the number of characters required is greater than integer, all digits
are sent with no leading spaces in a field as wide as necessary.

.r (single integer --)

Send single as an unsigned number right aligned in a field integer characters wide to the
default output stream. integer is assumed to be a signed number. If integer is not positive or
the number of characters required is greater than integer, all digits are sent with no leading
spaces in a field as wide as necessary.

.s (--) immediate

Interpretation: Send the names of the data types on the interpreter data type heap, including prefix
attributes, to the default output stream.

Compilation: Send the names of the data types on the compiler data type heap, including prefix
attributes, to the default output stream.

StrongForth 3.1 Glossary: forth 36

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

Note: . s does not send the values of the items on the data stack to the default output stream.

.sign (flag --)

If flagis true, send a minus sign (-) to the default output stream.

.sign+ (flag --)

If flagis true, send a minus sign (-) to the default output stream. Otherwise, send a plus sign
(+) to the default output stream.

.source (--)

Send the already parsed area of the input buffer of the default input stream to the default output
stream.

/ (complex complex -- 1lst)

Divide the first complex by the second complex, giving the quotient 1st. The result has the
same data type as the dividend. An exception is thrown if the second complex is zero, or if the
quotient lies outside of the range of a floating-point number.

/ (complex float -- 1lst)

Divide the complex floating-point number complex by the real floating-point number f1loat,
giving the quotient 1 st. The result has the same data type as the dividend.

/ (float float -- 1lst)

Divide the first f1oat by the second f1loat, giving the quotient 1st. The result has the same
data type as the dividend. An exception is thrown if the second f1oat is zero, or if the quotient
lies outside of the range of a floating-point number.

/ (signed signed -- 1lst)

Divide the first signed by the second signed, giving the signed quotient 1 st. An exception is
thrown if the second signed is zero. If both operands differ in sign, the result returned will be the
same as that returned by the phrase swap s>d swap sm/rem nip.

/ (signed-double signed -- 1lst)

Divide signed-double by signed, giving the signed double-precision quotient 1st. An
exception is thrown if signed is zero.

/ (unsigned unsigned -- 1lst)

Divide the first unsigned by the second unsigned, giving the unsigned quotient 1st. An
exception is thrown if the second unsigned is zero.

StrongForth 3.1 Glossary: forth 37

float.sf

float.sf

strongforth.sf

complex.sf

complex.sf

strongforth.sf

/ (unsigned-double unsigned -- 1lst)

Divide unsigned-double by unsigned, giving the unsigned double-precision quotient 1st.
An exception is thrown if unsigned is zero.

/10~n (float signed -- 1lst)

1st is equal to £loat divided by 10 raised to the power of signed. An ambiguous condition
exists if signed is negative.

/counted-string (-- unsigned)

unsigned is the maximum size of a counted string, in characters.

/hold (-- unsigned)

unsigned is the size in characters of the pictured numeric output string buffer.

/mod (signed signed -- 2nd 1lst)

Divide the first signed by the second signed, giving the signed remainder 2nd and the signed
quotient 1 st. An exception is thrown if the second signed is zero. If both operands differ in
sign, the result returned will be the same as that returned by the phrase swap s>d swap
sm/rem.

/mod (signed-double signed -- 2nd 1lst)

Divide signed-double by signed, giving the signed single-precision remainder 2nd and the
signed double-precision quotient 1 st. An exception is thrown if signed is zero.

/mod (unsigned unsigned -- 2nd 1lst)

Divide the first unsigned by the second unsigned, giving the unsigned remainder 2nd and the
unsigned quotient 1st. An exception is thrown if the second unsigned is zero.

/mod (unsigned-double unsigned -- 2nd 1lst)

Divide unsigned-double by unsigned, giving the unsigned single-precision remainder 2nd
and the unsigned double-precision quotient 1st. An exception is thrown if unsigned is zero.

/pad (-- unsigned)

unsigned is the size in characters of the scratch area pointed to by pad.

/params (-- unsigned)

unsigned is the maximum number of basic data types in a stack diagram.

/string (caddress -> character unsigned -- 1lst 3rd)

StrongForth 3.1 Glossary: forth 38

float.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

Adjust the character string at caddress -> character with length unsigned by one
character. The resulting character string, specified by 1st 3rd, begins at caddress ->
character plus one character and is unsigned minus one characters long.

/string (caddress -> character unsigned integer -- 1lst 3rd)

Adjust the character string at caddress -> character with length unsigned by integer
characters. The resulting character string, specified by 1st 3rd, begins at caddress —->
character plus integer characters and is unsigned minus integer characters long.

Note: integer may be a negative value.

0.r (double integer --) strongforth.sf

Send double as an unsigned double-precision number right aligned with leading zeros (if
required) in a field integer characters wide to the default output stream. integer is assumed
to be a signed number. If integer is not positive or the number of characters required is greater
than integer, all digits are sent with no leading zeros in a field as wide as necessary.

0.r (signed integer --) strongforth.sf

Send signed as a signed number right aligned with leading zeros (if required) in a field
integer characters wide to the default output stream. integer is assumed to be a signed
number. If integer is not positive or the number of characters required is greater than
integer, all digits are sent with no leading zeros in a field as wide as necessary.

0.r (signed-double integer --) strongforth.sf

Send signed-double as a signed double-precision number right aligned with leading zeros (if
required) in a field integer characters wide to the default output stream. integer is assumed
to be a signed number. If integer is not positive or the number of characters required is greater
than integer, all digits are sent with no leading zeros in a field as wide as necessary.

0.r (single integer --) strongforth.sf

Send single as an unsigned number right aligned with leading zeros (if required) in a field
integer characters wide to the default output stream. integer is assumed to be a signed
number. If integer is not positive or the number of characters required is greater than
integer, all digits are sent with no leading zeros in a field as wide as necessary.

0< (float -- flag)

flagis true ifand only if float is less than zero.

0< (signed -- flag)

flagis true if and only if signed is less than zero.

0< (signed-double -- flag)

StrongForth 3.1 Glossary: forth 39

flagis true if and only if signed-double is less than zero.

0<= (float -- flag)

flagis true if and only if f1loat is less than or equal to zero.

0<= (signed -- flag)

flagis true if and only if signed is less than or equal to zero.

0<= (signed-double -- flag)

flagis true if and only if signed-double is less than or equal to zero.

0<> (complex -- flag) complex.sf

flagis true if and only if either the real or the imaginary part or both of complex are not equal
to zero.

0<> (double -- flag)

flagis true if and only if double is not equal to zero.

0<> (float -- flag)

flagis true if and only if f1oat is not equal to zero.

0<> (single -- flag)

flagis true if and only if single is not equal to zero.

0= (complex -- flag) complex.sf

flagis true if and only if both the real and the imaginary part of complex are equal to zero.

0= (double -- flag)

flagis true if and only if double is equal to zero.

0= (float -- flag)

flagis true if and only if f1oat is equal to zero.

0= (single -- flag)

flagis true if and only if single is equal to zero.

0> (float -- flag)

StrongForth 3.1 Glossary: forth 40

flagis true if and only if f1loat is greater than zero.

0> (signed -- flag)

flagis true if and only if signed is greater than zero.

0> (signed-double -- flag)

flagis true if and only if signed-double is greater than zero.

0>= (float -- flag)

flagis true ifand only if £1loat is greater than or equal to zero.

0>= (signed -- flag)

flagis true if and only if signed is greater than or equal to zero.

0>= (signed-double -- flag)

flagis true if and only if signed-double is greater than or equal to zero.

0i+ (float -- complex)

complex is the complex floating-point literal with f1oat as the real part and 0e0 as the
imaginary part.

0i0 (-- complex)

complex is the complex floating-point literal with 0e0 as the real part and 0e 0 as the imaginary
part.

1+ (address -- 1lst)

Add one to address giving 1st.

1+ (address -> complex -- 1lst)

Add the number of address units per complex floating-point number to address -> complex,
giving 1st.

1+ (address -> double -- 1lst)

Add the number of address units per double cell to address -> double, giving 1st.

1+ (address -> float -- 1lst)

Add the number of address units per floating-point number to address -> float, giving 1st.

StrongForth 3.1 Glossary: forth 41

complex.sf

complex.sf

1+ (address -> single -- 1lst)

Add the number of address units per cell to address —-> single, giving 1st.

1+ (caddress -- 1lst)

Add the number of address units per character to caddress, giving 1st.

1+ (dfaddress -- 1st)

Add the number of address units per double-precision floating-point number to dfaddress,
giving 1st.

1+ (dfaddress -> complex -- 1lst)

Add the number of address units per complex double-precision floating-point number to
dfaddress -> complex, giving 1st.

1+ (integer -- 1lst)

Addone to integer, giving 1st.

1+ (integer-double -- 1st)

Addone to integer-double, giving 1st.

1+ (sfaddress -- 1lst)

Add the number of address units per single-precision floating-point number to sfaddress,
giving 1st.

1+ (sfaddress -> complex -- 1lst)

Add the number of address units per complex single-precision floating-point number to
sfaddress -> complex, giving 1st.

1- (address -- 1lst)

Subtract one from address, giving 1st.

1- (address -> complex -- 1lst)

Subtract the number of address units per complex floating-point number from address ->
complex, giving 1st.

1- (address -> double -- 1lst)

Subtract the number of address units per double cell from address -> double, giving 1st.

StrongForth 3.1 Glossary: forth 42

1- (address -> float -- 1lst)

Subtract the number of address units per floating-point number from address -> float,
giving 1st.

1- (address -> single -- 1lst)

Subtract the number of address units per cell from address -> single, giving 1st.

1- (caddress -- 1lst)

Subtract the number of address units per character from caddress, giving 1st.

1- (dfaddress -- 1lst)

Subtract the number of address units per double-precision floating-point number from
dfaddress, giving 1st.

1- (dfaddress -> complex -- 1lst)

Subtract the number of address units per complex double-precision floating-point number from
dfaddress -> complex, giving 1st.

1- (integer -- 1lst)

Subtract one from integer, giving 1st.

1- (integer-double -- 1lst)

Subtract one from integer-double, giving 1st.

1- (sfaddress -- 1lst)

Subtract the number of address units per single-precision floating-point number from
sfaddress, giving 1st.

1- (sfaddress -> complex -- 1lst)

Subtract the number of address units per complex single-precision floating-point number from
sfaddress -> complex, giving 1st.

1st (stack-diagram -- 1st) strongforth.sf

Append a reference to the basic data type at the first position of the input parameter list as an input
or output parameter to stack-diagram.

1st is used in a stack diagram to specify input or output parameters which should have exactly the
same data type as the first data type in the input parameter list of the same definition.

An exception is thrown if the input parameter list is empty, or if the internal storage for input and
output parameters of stack-diagram is exceeded.

StrongForth 3.1 Glossary: forth 43

2* (integer -- 1lst)
Multiply integer by 2 giving the product 1st.
Note that 2* may only be used on integer values. Use 1shift for shifting bits to the left.

2* (integer-double -- 1lst)

Multiply integer-double by 2 giving the product 1st.

2/ (integer -- 1lst)
Divide integer by 2 giving the quotient 1st.

Note that 2/ may only be used on unsigned numbers. Use rshift for shifting bits to the right.

2/ (integer-double -- 1lst)
Divide integer—double by 2 giving the quotient 1st.

integer-double is assumed to be an unsigned numeric value.

2/ (signed -- 1st)
Divide signed by 2 giving the quotient 1st.

Note that 2/ may only be used on signed numbers. Use rshift for shifting bits to the right.

2/ (signed-double -- 1lst)

Divide signed-double by 2 giving the quotient 1st.

2literal (single single --) compile-only strongforth.sf
Compilation: Append the runtime semantics given below to the current definition.
Runtime: (single single --)

Place the first single and then the second single on the stack. Both items have the same
values and data types as were supplied at compilation time.

2nd (stack-diagram -- 1lst) strongforth.sf

Append a reference to the basic data type at the second position of the input parameter list as an
input or output parameter to stack-diagram.

2nd is used in a stack diagram to specify input or output parameters which should have exactly the
same data type as the second data type in the input parameter list of the same definition. Since the
index refers to the basic data types in the input parameter list, it is possible to build a reference to
the tail of a compound data type representing an input parameter.

An exception is thrown if the input parameter list contains less than two basic data types, if the
referenced data type is itself a reference, or if the internal storage for input and output parameters
of stack-diagram is exceeded.

StrongForth 3.1 Glossary: forth 44

3rd (stack-diagram -- 1st)

Append a reference to the basic data type at the third position of the input parameter list, as an
input or output parameter to stack-diagram.

3rd is used in a stack diagram to specify input or output parameters which should have exactly the
same data type as the third data type in the input parameter list of the same definition. Since the
index refers to the basic data types in the input parameter list, it is possible to build a reference to
the tail of a compound data type representing an input parameter.

An exception is thrown if the input parameter list contains less than three basic data types, if the
referenced data type is itself a reference, or if the internal storage for input and output parameters
of stack-diagram is exceeded.

("<spaces>name" -- colon-definition)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name,
called a colon definition. Enter compilation state. Empty and unlock the compiler data type heap.
Initialize the number of locals to zero. Start the current definition, producing colon-
definition. Append the initiation semantics given below to the current definition.

Initiation: Continue execution.

The execution semantics of name will be determined by the words compiled into the body of the
definition. The current definition cannot be found in the dictionary until it is finished or until the
execution of does> or ; code.

name Execution: (—--)
Execute the definition name.

Note that the new definition does have no stack effects by default. Stack effects have to be
specified separately if they are intended. By using a stack diagram phrase (... -- ...)
immediately following : and name, the new definition is modified to incorporate stack effects.

:noname (-- colon-definition colon-definition)

Create a definition with no name, called a colon definition. Enter compilation state. Empty and
unlock the compiler data type heap. Initialize the number of locals to zero. Start the current
definition, producing colon-definition and a copy of it. Append the initiation semantics
given below to the current definition.

Initiation: Continue execution.

The execution semantics of the definition will be determined by the words compiled into its body.
The definition is incomplete until it is finished or until the execution of does> or ; code, leaving
one copy of colon-definition on the stack.

Execution: (--)
Execute the definition.

Note that the new definition does have no stack effects by default. Stack effects have to be
specified separately if they are intended. By using a stack diagram phrase (... -- ...)
immediately following : noname, the new definition is modified to incorporate stack effects

; (colon-definition --) compile-only

StrongForth 3.1 Glossary: forth 45

strongforth.sf

strongforth.sf

Compilation: Append the runtime semantics given below to the current definition. End the current
definition and enter interpretation state, consuming colon-definition. Empty the locals
vocabulary. Lock the compiler data type heap. An exception is thrown if the contents of the
compiler data type heap do not exactly match the output parameters of the current definition.

Runtime: If the compiler data type heap is not locked, return to the calling definition.

;code (colon-definition - code-definition) compile-only

Compilation: Append the runtime semantics given below to the current definition. End the current
definition and enter interpretation state, consuming colon-definition and creating code-
definition. Empty the locals vocabulary. Lock the compiler data type heap. An exception is
thrown if the contents of the compiler data type heap does not exactly match the output parameters
of the current definition. Subsequent characters in the parse area typically represent source code in
assembly language, generating machine code.

Runtime: Specify the execution semantics of the most recent definition, referred to as name, as
given below. An ambiguous condition exists if the most recent definition was not defined with
create or a user-defined definition that calls create.

Initiation: Place the address of name's data field in register ebx.
name Execution: (--)
Perform the machine code sequence that was generated following ; code.

Note that new definitions do have no stack effects by default. Stack effects have to be specified
separately if they are intended. By using a stack diagram phrase (... —-- ...) immediatly
following ; code, the new definition is modified to incorporate stack effects. Specifying a stack
diagram is mandatory, because at least the data type of name's data field address has to be present.
The data field address is always the last input parameter. The stack effect of name is defined by the
stack diagram following ; code, omitting the data field address.

< (address 1lst -- flag)

flagis true ifand only if address is less than 1st.

< (float 1st -- flag)

flagis trueifand only if float is less than 1st.

< (integer 1lst -- flag)

flagis trueifand only if integer is less than 1st. integer is assumed to be an unsigned
numeric value.

< (integer-double 1lst -- flag)

flagis trueifand onlyif integer-double is less than 1st. integer-double is
assumed to be an unsigned numeric value.

< (signed 1st -- flag)

flagis true if and only if signed is less than 1st.

StrongForth 3.1 Glossary: forth 46

asm.sf

< (signed-double 1lst -- flag)

flagis true if and only if signed-double is less than 1st.

<# (double -- number-double)

Initialize pictured numeric output conversion. number-double is equal to double.

<= (address 1lst -- flag)

flagis true if and only if address is less than or equal to 1st.

<= (float 1st -- flag)

flagis true ifand only if float is less than or equal to 1st.

<= (integer 1lst -- flag)

flagis true if and only if integer is less than or equal to 1st. integer is assumed to be an
unsigned numeric value.
<= (integer-double 1lst -- flag)

flagis trueifand only if integer—-double is less than or equal to 1st. integer-
double is assumed to be an unsigned numeric value.

<= (signed 1lst -- flag)

flagis true if and only if signed is less than or equal to 1st.

<= (signed-double 1lst -- flag)

flagis true if and only if signed-double is less than or equal to 1st.

<> (complex 1lst -- flag)

flagis true if and only if complex is not equal to 1st.

<> (double 1st -- flag)

flagis true if and only if double is not bit-by-bit identical with 1st.

<> (float 1st -- flag)

flagis true ifand only if f1oat is not equal to 1st.

<> (single 1lst -- flag)

StrongForth 3.1 Glossary: forth 47

strongforth.sf

complex.sf

flagis true if and only if single is not bit-by-bit identical with 1st.

<ack> (-- character)

character is the ASCII “acknowledge” control character (code 6).

<bel> (-- character)

character is the ASCII “bell” control character (code 7).

<bs> (-- character)

character is the ASCII “backspace” control character (code 8).

<can> (-- character)

character is the ASCII “cancel” control character (code 24).

<cr> (-- character)

character is the ASCII “carriage return” control character (code 13).

<dcl> (-- character)

character is the ASCII “device control 1” control character (code 17).

<dec2> (-- character)

character is the ASCII “device control 2” control character (code 18).

<de3> (-- character)

character is the ASCII “device control 3” control character (code 19).

<dc4> (-- character)

character is the ASCII “device control 4” control character (code 20).

 (-- character)

character is the ASCII “delete” control character (code 127).

<dle> (-- character)

character is the ASCII “data link escape” control character (code 16).

 (-- character)

character is the ASCII “end of medium” control character (code 25).

StrongForth 3.1 Glossary: forth

48

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

<eng> (-- character)

character is the ASCII “enquiry” control character (code 5).

<eot> (-- character)

character is the ASCII “end of transmission” control character (code 4).

<esc> (-- character)

character is the ASCII “escape” control character (code 27).

<etb> (-- character)

character is the ASCII “end of transmission block™ control character (code 23).

<etx> (-- character)

character is the ASCII “end of text” control character (code 3).

<ff> (-- character)

character is the ASCII “form feed” control character (code 12).

<fs> (-- character)

character is the ASCII “file separator” control character (code 28).

<gs> (-- character)

character is the ASCII “group separator” control character (code 29).

<ht> (-- character)

character is the ASCII “horizonal tabulator” control character (code 9).

<1lf> (-- character)

character is the ASCII “line feed” control character (code 10).

<nak> (-- character)

character is the ASCII “negative acknowledge” control character (code 21).

<nul> (-- character)

character is the ASCII “null” control character (code 0).

StrongForth 3.1 Glossary: forth

49

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

ascii.sf

<rs> (-- character) ascii.sf

character is the ASCII “record separator” control character (code 30).

<si> (-- character) ascii.sf

character is the ASCII “shift in” control character (code 15).

<so> (-- character) ascii.sf

character is the ASCII “shift out” control character (code 14).

<soh> (-- character) ascii.sf

character is the ASCII “start of header” control character (code 1).

<stx> (-- character) ascii.sf

character is the ASCII “start of text” control character (code 2).

<sub> (-- character) ascii.sf

character is the ASCII “substitute” control character (code 26).

<syn> (-- character) ascii.sf

character is the ASCII “synchronous idle” control character (code 22).

<us> (-- character) ascii.sf

character is the ASCII “unit separator” control character (code 31).

<vt> (-- character) ascii.sf

character is the ASCII “vertical tabulator” control character (code 11).

= (complex 1lst -- flag) complex.sf

flagis true if and only if complex is equal to 1st.

= (double 1st -- flag)

flagis true if and only if double is bit-by-bit identical with 1st.

= (float 1st -- flag)

flagis trueifand onlyif float is equal to 1st.

= (single 1lst -- flag)

StrongForth 3.1 Glossary: forth 50

flagis true if and only if single is bit-by-bit identical with 1st.

> (address 1st -- flag)

flagis true if and only if address is greater than 1st.

> (float 1st -- flag)

flagis trueifand only if £loat is greater than 1st.

> (integer 1lst -- flag)

flagis trueifand only if integer is greater than 1st. integer is assumed to be an
unsigned numeric value.

> (integer-double 1st -- flag)

flagis true ifand only if integer-double is greater than 1st. integer-double is
assumed to be an unsigned numeric value.

> (signed 1st -- flag)

flagis true if and only if signed is greater than 1st.

> (signed-double 1st -- flag)

flagis true if and only if signed-double is greater than 1st.

>= (address 1lst -- flag)

flagis true if and only if address is greater than or equal to 1st.

>= (float 1st -- flag)

flagis true ifand only if £1loat is greater than or equal to 1st.

>= (integer 1lst -- flag)

flagis true if and only if integer is greater than or equal to 1st. integer is assumed to be
an unsigned numeric value.

>= (integer-double 1lst -- flag)

flagis trueifand only if integer-double is greater than or equal to 1st. integer-
double is assumed to be an unsigned numeric value.

>= (signed 1lst -- flag)

flagis true if and only if signed is greater than or equal to 1st.

StrongForth 3.1 Glossary: forth 51

>= (signed-double 1st -- flag)

flagis true if and only if signed-double is greater than or equal to 1st.

>attributes (data-type -- data-type-attributes)

data-type-attributes is the data type attributes of data-type.

>body (definition -- address)

If definition is a created definition, address is the address of its data field. Otherwise,
address is null.

>body is a virtual method of the definition class.

>class-attributes (data-type -- class-attributes)

If data-type is directly or indirectly derived from object, class—-attributes is the class
attributes of data-type. Otherwise, an exception is thrown and class-attributes is null.

>context (vocabulary --)

Remove vocabulary from both the context vocabulary list and the hidden vocabulary list. Make
vocabulary the head of the context vocabulary list. An ambiguous condition exists if
vocabulary was not included in one of the two vocabulary lists before >context is executed.

>data-type (data-type-attributes -- data-type)

data-type is the data type associated with data-type-attributes. No additional
attributes are set in data-type.

>definition (data-type -- created-definition) strongforth.sf

created-definition is the definition associated with data-type, that is used within stack
diagrams. An exception is thrown if no such definition is found.

>definition (vocabulary -- created-definition) strongforth.sf

created-definition is the definition associated with vocabulary, that is used to move a
vocabulary the top of the context vocabulary list. An exception is thrown if no such definition is
found.

>dt (address -> data-type --)

In interpretation state (state is false), append the compound data type stored at address ->
data-type to the interpreter data type heap. In compilation state (state is true), append the
compound data type stored at address -> data-type to the compiler data type heap. An
exception is thrown if the respective data type heap overflows.

StrongForth 3.1 Glossary: forth 52

>dt (data-type --)

In interpretation state (state is false), append the basic data type data-type to the
interpreter data type heap. In compilation state (state is true), append the basic data type
data-type to the compiler data type heap. An exception is thrown if the respective data type
heap overflows.

>flag (single -- 1lst)

1st is equal to false if single is zero. 1st is equal to true if single is not zero. This
proprietary definition is required by the definition of until to convert a single cell occupying a
register or a stack location into a flag that resides in the processor status register.

>float (caddress -> character unsigned -- float flag)

An attempt is made to convert the string specified by caddress -> character unsigned
to internal floating-point representation. If the string represents a valid floating-point number
according to the syntax below, f1oat is its value and £1ag is true. If the string does not
represent a valid floating-point number, £1oat is undefined and flagis false.

A string of blanks is being treated as a special case representing zero.

convertible string := <significand>[<exponent>]

<significand> := [<sign>]{<digits>[.<digits0>] | .<digits>}
<exponent> = <marker><digits0>

<marker> = {<e-form> | <sign>}

<e-form> = <e-char>[<sign>]

<sign> = { + | -}

<e-char> ={D]| d]| E | e}

<digits> = <digit><digits0>

<digits0> = <digit>~*

<digit> = {0 | 11211 314|561 71819}
>in (-- address -> unsigned)

address -> unsigned is the address of a cell containing the offset in characters from the
start of the input buffer to the start of the parse area of the default input stream.

>in (input-stream -- address -> unsigned)

address -> unsigned is the address of a cell containing the offset in characters from the
start of the input buffer to the start of the parse area of input-stream.

>number (integer-double caddress -> character unsigned -- 1lst 2nd
4 th)

1st is the unsigned result of converting the characters within the string specified by caddress
-> character unsigned into digits, and adding each into integer—-double after
multiplying integer-double by the number-conversion radix in base. Conversion continues
left-to-right until a character that is not convertible, including any + or -, is encountered, or the
string is entirely converted. 2nd is the location of the first unconverted character or the first
character past the end of the string if the string was entirely converted. 4 th is the number of
unconverted characters in the string.

StrongForth 3.1 Glossary: forth 53

float.sf

>r (-- r-index) compile-only

Compilation: Create a local with the name r@. Append the runtime semantics given below to the
current definition. r-index is the number of cells reserved for locals in the stack frame of the
current definition after creating r@.

Runtime: (single —--) or (double --) or (float —--) or (complex —--)

Store single or double or float or complex into the local r@.

>sign (character -- signed)

signedis+1 if character is equal to +, and -1 if character is equal to —. For all other
values of character, signed is zero.

>structure-attributes (data-type -- structure-attributes)

If data-type is directly or indirectly derived from structure, structure-attributes
is the structure attributes of data-type. Otherwise, an exception is thrown and structure-
attributes is null.

>token (definition data-type -- token)

An exception is thrown if data-type is not a qualified token. token is the execution token of
definition. An exception is thrown if the stack diagram of definition does not match the
stack diagram represented by the qualified token data-type according to the rules of the

StrongForth data type system. If definition does not have an execution token, or if matching

the stack diagrams requires some register shuffling, a chunk of code is compiled to generate a valid

execution token. This works in either compilation or interpretation state.

>token (definition deferred-definition -- token)

token is the execution token of definition. An exception is thrown if the stack diagram of
definition does not match the stack diagram of deferred-definition according to the

rules of the StrongForth data type system. If definition does not have an execution token, or if

matching the stack diagrams requires some register shuffling, a chunk of code is compiled to
generate a valid execution token. This works in either compilation or interpretation state.

>token (definition virtual-definition -- token)

token is the execution token of definition. An exception is thrown if the stack diagram of
definition does not match the stack diagram of virtual-definition, with the last input
parameter replaced with the data type of the class that is currently being defined, according to the

rules of the StrongForth data type system. If definition does not have an execution token, or if

matching the stack diagrams requires some register shuffling, a chunk of code is compiled to
generate a valid execution token. This works in either compilation or interpretation state.

? (--) immediate

Interpretation: (address -> x --)

StrongForth 3.1 Glossary: forth 54

strongforth.sf

struct.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

Send x to the default output stream by using a suitable version of .. x can be a single-cell or a
double-cell item or a floating-point number or a complex floating-point number.

Compilation: Append the runtime semantics given below to the current definition.
Runtime: (address -> x --)

Send x to the default output stream by using a suitable version of .. x can be a single-cell or a
double-cell item or a floating-point number or a complex floating-point number.

?alias (code-definition --)

If the machine code instructions of code-definition consist of nothing else buta call,
followed by a ret, instruction, remove this code sequence from the code-space memory space
and make code-definition an alias for the definition that is actually being performed.
?alias is a low-level internal optimization.

?block (unsigned -- 1st)

1st is unsigned. An exception is thrown if unsigned is not a valid block number between 1
and #blocks.

?byte (integer -- 1st)

1st is integer. An exception is thrown if integer cannot be represented as an unsigned byte-
size integer, 1. €., its value is not between 0 and 255.

?byte (signed -- 1lst)

1st is signed. An exception is thrown if signed cannot be represented as a signed byte-size
integer, 1. e., its value is not between -128 and +127.

?congruent (definition --)

In interpretation state, compare the interpreter data type heap with the output parameters of
definition. In compilation state, compare the compiler data type heap with the output
parameters of definition. An exception is thrown if the data types do not exactly match.
?congruent resolves data type references to the input parameters of definition.

?create-vtable (object-size --)

If the class that is currently being defined does not yet have a virtual method table, create a virtual
method table in the data-space memory space and initialize it with object-size and the
tokens of the parent class plus unassigned tokens for newly added virtual methods. Otherwise,
just update the existing virtual method table with object-size.

?created-definition (definition -- created-definition)

created-definitionis definition. An exception is thrown if definition was not
defined by create.

StrongForth 3.1 Glossary: forth 55

block.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

?data-type (caddress -> character unsigned -- data-type)

Search all vocabularies for a definition with the name given by the string caddress ->
character unsigned that was created by procreates. If such a definition is found, return
the data type the definition is associated with as data-type. If no data type with this name is
found, an exception is thrown and data-type is null.

?data-type (definition -- data-type)

If definition was created by procreates, data—-type is the data type it is associated with.
Otherwise, an exception is thrown and data-type is null.

?decimal (--)

An exception is thrown if the value of the number-conversion radix base is not (decimal) 10.

?do (-- do-destination) compile-only

Compilation: Create and initialize do-destination. Save a copy of the compiler data type
heap. Rename the loop index i into j, if it already exists, and define a new local i as loop index.
Append the runtime semantics given below to the current definition. The semantics are incomplete
until resolved by a consumer of do-destination such as 1oop, +1oop and -1 oop.

Runtime: (integer 1st —--) or (address 1st —-)

If the limit integer or address is equal to the index 1st, branch to the location given by the
consumer of do—destination. Otherwise initialize the loop control parameters with limit
integer or address and index 1st, and continue execution.

?loop (-- local-definition)

local-definition is the loop index of the innermost do loop. An exception is thrown if
?loop is executed in interpretation state, if no local with name 1 exists or if this local has no
enclosing do loop.

?negate (float signed -- 1lst)

If signed is negative, change the sign of float, giving 1st.

?negate (integer signed -- 1lst)

If signed is negative, 1st is the arithmetic inverse of integer. Otherwise, 1st is equal to
integer.

?negate (integer-double signed -- 1lst)

If signed is negative, 1st is the arithmetic inverse of integer—double. Otherwise, 1st is
equal to integer-double.

?overflow (address -- 1lst)

StrongForth 3.1 Glossary: forth 56

strongforth.sf

float.sf

strongforth.sf

strongforth.sf

float.sf

1st is equal to address. An exception is thrown if the preceding arithmetic operation on
address caused an unsigned numeric overflow, i. e., the carry bit is set.

?overflow (integer -- 1lst)

1st is equal to integer. An exception is thrown if the preceding arithmetic operation on
integer caused an unsigned numeric overflow, i. e., the carry bit is set.

?overflow (integer-double -- 1lst)

1st is equal to integer-double. An exception is thrown if the preceding arithmetic operation
on integer—-double caused an unsigned numeric overflow, i. e., the carry bit is set.

?overflow (signed -- 1lst)

1st is equal to signed. An exception is thrown if the preceding arithmetic operation on signed
caused a two’s complement numeric overflow, i. e., the overflow bit is set.

?overflow (signed-double -- 1st)

1st is equal to signed-double. An exception is thrown if the preceding arithmetic operation
on signed-double caused a two’s complement numeric overflow, i. e., the overflow bit is set.

?parse-byte ("xx" -- character) escape.sf

Parse two hexadecimal digits xx and return the resulting two-digit ASCII code as character. If
the parse area does not contain at least two characters or one or both of these characters is no
hexadecimal digit, an exception is thrown and character is undefined.

?parse-char ("c" -- character) escape.sf

Parse ¢ and return it as character. If the parse area is empty, an exception is thrown and
character is null.

?qualified-token (data-type -- definition) strongforth.sf

definition is a definition with the name execute that executes a qualified token with data
type data-type. An exception is thrown if no such definition exists.

?range (flag --) strongforth.sf

An exception is thrown if flagis false.

?single (integer-double -- 1lst) strongforth.sf

1stis integer—double. An exception is thrown if integer—double cannot be represented
as an unsigned single-cell integer, i. e., its value is not between 0 and max-unsigned.

?single (signed-double -- 1st) strongforth.sf

StrongForth 3.1 Glossary: forth 57

1st is signed-double. An exception is thrown if signed-double cannot be represented as
a signed single-cell integer, i. e., its value is not between max-signed negate 1- and max-
signed.

?stack-diagram (stack-diagram --)

Throws an exception if stack-diagram is incomplete. A stack diagram is incomplete, if it does
not contain - - or if it ends with —>.

?to (definition --)

In interpretation state, check if the compound data type on top of the interpreter data type heap
matches the output parameter of definition. In compilation state, check if the compound data
type on top of the compiler data type heap matches the output parameter of definition. An
exception is thrown if the check fails. An ambiguous condition exists if definition is not either
a value definition or a locals definition, which both have only one output parameter.

?value-definition (caddress -> character unsigned --
value-definition)

Search all vocabularies for an instance of class value-definition with the name given by the
string caddress -> character unsigned. If such a definition is found, return it as
value-definition. An exception is thrown if no instance of class value-definition
with this name is found, and value-definition is null.

@ (address -> complex -- 2nd)

2nd is the complex floating-point number stored at address -> complex.

@ (address -> double -- 2nd)

2nd is the double-cell item stored at address -> double.

@ (address -> float -- 2nd)

2nd is the floating-point number stored at address -> float.

@ (address -> single -- 2nd)

2nd is the single-cell item stored at address -> single.

@ (caddress -> flag -- 2nd)

2nd is the flag stored at caddress -> flag. Since the flag is assumed to have character size,
while 2nd has cell size, it is extended to either false or true.

@ (caddress -> signed -- 2nd)

2nd is the signed number stored at caddress —-> signed. Since the number is assumed to
have the character size, while 2nd has cell size, its value is sign extended.

StrongForth 3.1 Glossary: forth 58

strongforth.sf

strongforth.sf

@ (caddress -> single -- 2nd)

2nd is the item stored at caddress —-> single. Since the item is assumed to have character
size, while 2nd has cell size, its value is extended with leading zero bits.

@ (dfaddress -> complex -- 2nd)

2nd is the complex double-precision floating-point number stored at dfaddress ->
complex.

@ (dfaddress -> float -- 2nd)

2nd is the double-precision floating-point number stored at dfaddress —-> float.

@ (sfaddress -> complex -- 2nd)

2nd is the complex single-precision floating-point number stored at sfaddress —-> complex.

@ (sfaddress -> float -- 2nd)

2nd is the single-precision floating-point number stored at sfaddress -> float.

abort (--) strongforth.sf

Throw an exception with code -1.

abort" ("ccc<delimiter>" --) compile-only strongforth.sf

Parse ccc delimited by a quote (™). Append the runtime semantics given below to the current
definition.

Runtime: (single —-)

If single is not equal to zero, copy the string ccc to 1ine, fill the remainder of 1ine with
spaces and throw an exception with code -2.

abs (complex -- float) complex.sf

float is the absolute value of the complex floating-point number complex.

abs (float -- 1lst)

1st is the absolute value of float.

abs (integer -- 1st)

1st is the absolute value of integer. integer is assumed to be a signed numeric value.

abs (integer-double -- 1lst)

StrongForth 3.1 Glossary: forth 59

1st is the absolute value of integer—double. integer-double is assumed to be a signed
numeric value.

abs**2 (complex -- float)

float is the square of the absolute value of the complex floating-point number complex.

accept (caddress -> character integer -- 3rd)

Receive a character string of at most integer characters at caddress -> character from
the user input device. Send graphic characters to the user output device as they are received. The
usual editing functions that the system performs in order to construct the character string
(backspace etc.), might be used.

Input terminates when a carriage return character is received. When input terminates, nothing is
appended to the character string.

3rd is the length of the character string stored at caddress -> character.

accept is a deferred word.

access (object-size "<spaces>name" -- lst)

Skip leading space delimiters. Parse name delimited by a space. Find class name. Add the word
list that combines the private and protected vocabularies of class name to the list of context
vocabularies. An exception is thrown if name is not the name of a class the class currently being
defined is a friend to.

object-size is a dummy parameter that ensures that access is always used within the body
of a class definition. 1st is equal to object-size.

acos (complex -- 1lst)

1st is the principal radian angle whose cosine is complex. This operation is based on complex
floating-point numbers.

acos (float -- 1st)

1st is the principal radian angle whose cosine is £1oat. An ambiguous condition exists if the
absolute value of £1oat is greater than one.

acosh (complex -- 1lst)

1st is the complex floating-point value whose hyperbolic cosine is complex. This operation is
based on complex floating-point numbers.

acosh (float -- 1st)

1st is the floating-point value whose hyperbolic cosine is £1oat. An ambiguous condition exists
if float is less than one.

action-of ("<spaces>name" --) compile-only

StrongForth 3.1 Glossary: forth 60

complex.sf

strongforth.sf

complex.sf

float.sf

complex.sf

float.sf

strongforth.sf

Compilation: Skip leading space delimiters. Parse name delimited by a space. Find a deferred
definition with the name name. Append the run-time semantics given below to the current
definition. An exception is thrown if a deferred definition with the name name does not exist.

Run-time: (-- token)

token is the execution token that the deferred definition name is set to execute.

action-of ("<spaces>name" -- token) execute-only

Skip leading space delimiters. Parse name delimited by a space. Find a deferred definition with the
name name. token is the execution token that the deferred definition name is set to execute. An
exception is thrown if a deferred definition with the name name does not exist.

add-origin (control-flow origin --)

Add origin to the linked list kept by control-flow. origin will be resolved and deleted
recursively together with control-flow.

address (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type address.

address-unit-bits (-- unsigned)

unsigned is 8, the number of bits in each address unit.

again (destination --) compile-only

Compilation: Append the runtime semantics given below to the current definition, resolving the
backward reference destination. Delete destination. Lock the compiler data type heap.
An exception is thrown if the contents of the compiler data type heap do not exactly match the copy
that was saved when destination was created.

Runtime: Continue execution at the location specified by destination. If no other control flow
words are used, any program code after again will never be executed.

ahead (-- origin) compile-only

Compilation: Put a new unresolved forward reference origin onto the stack and save a copy of
the compiler data type heap. Append the runtime semantics given below to the current definition.
Lock the compiler data type heap. The semantics are incomplete until origin is resolved.

Runtime: Continue execution at the location specified by the resolution of origin. If no other
control flow words are used, the program code immediately following ahead will never be
executed.

align (--)

If the first unused address of the default memory space is not cell aligned, reserve the required
minimum number of address units to make it cell aligned.

StrongForth 3.1 Glossary: forth 61

strongforth.sf

strongforth.sf

strongforth.sf

align (memory-space --)

If the first unused address of memory-space is not cell aligned, reserve the required minimum
number of address units to make it cell aligned.

aligned (address -- 1lst)

1st is the lowest cell aligned address greater than or equal to address.

aligned (unsigned unsigned -- 1lst)

1st is the lowest unsigned number greater than or equal to the first unsigned, that is a multiple
of the second unsigned.

allocate (unsigned -- address)

Allocate unsigned address units of contiguous dynamic memory space. The initial content of the
allocated memory space is undefined. If the allocation succeeds, address is the aligned starting
address of the allocated memory space. An exception is thrown if the operation fails.

allocate-counted-string (caddress -> character unsigned -- 1lst) strext.sf

Allocate unsigned plus 1 characters of dynamic memory. Copy the character string caddress
-> character unsigned as a counted string in the allocated memory space. 1st is the
address of the counted string.

allot (integer --)

If integer is greater than zero, reserve integer address units of the default memory space. If
integer is less than zero, release |integer| address units of the default memory space. If
integer is zero, leave the default memory space unchanged.

If the first unused address of the default memory space is cell aligned and integer is a multiple
of cell size in address units prior to execution of allot, it will remain cell aligned when allot
finishes execution.

If the first unused address of the default memory space is character aligned and integerisa
multiple of character size in address units prior to execution of allot, it will remain character
aligned when allot finishes execution.

allot (integer memory-space --)

If integer is greater than zero, reserve integer address units of memory-space. If
integer is less than zero, release |integer| address units of memory-space. If integer is
zero, leave memory-space unchanged.

If the first unused address of memory-space is cell aligned and integer is a multiple of cell
size in address units prior to execution of allot, it will remain cell aligned when allot finishes
execution.

If the first unused address of memory-space is character aligned and integer is a multiple of
character size in address units prior to execution of allot, it will remain character aligned when
allot finishes execution.

StrongForth 3.1 Glossary: forth 62

alog (complex -- 1lst) complex.sf

Raise ten to the power complex, giving 1st. This operation is based on complex floating-point
numbers.

alog (float -- 1st)

Raise ten to the power float, giving 1st.

alpha-numeric (--) strongforth.sf

Set the number-conversion radix to 36 (alpha-numeric).

also (--) order.sf

In StrongForth, this definition has no semantics.

ancestor? (data-type data-type -- flag) strongforth.sf

flagis true if and only if the second data-type is equal to the first data-type, or if the
second data-type is directly or indirectly derived from the first data-type.

and (data-type data-type -- 1lst)

1st is the first data-type with attributes that are the bit-by-bit logical and of the attributes of
both parameters data-type.

and (object-size object-size object-size -- 1st 2nd 3rd) strongforth.sf

Terminate a block of a union of members within a class definition, and start a new one. 1st and
3rd are equal to the first object-size. 2nd is the maximum of the second and the third
object-size.

and (single logical -- 1lst)
1st is the bit-by-bit logical and of single and logical.

any: (stack-diagram -- 1lst)

When used in a stack diagram, specifies the succeeding input or output parameter shall be assigned
to any register or register pair. An exception is thrown if the input or output parameter does not fit
into a register or a register pair.

arg (complex -- float) complex.sf

float is the angle of the complex floating-point number complex.

asin (complex -- 1lst) complex.sf

StrongForth 3.1 Glossary: forth 63

1st is the principal radian angle whose sine is complex. This operation is based on complex
floating-point numbers.

asin (float -- 1st) float.sf

1st is the principal radian angle whose sine is £1oat. An ambiguous condition exists if the
absolute value of £1oat is greater than one.

asinh (complex -- 1lst) complex.sf

1st is the floating-point value whose hyperbolic sine is complex. This operation is based on
complex floating-point numbers.

asinh (float -- 1st) float.sf

1st is the floating-point value whose hyperbolic sine is £ 1oat. An ambiguous condition exists if
float is less than zero.

assembler (--) immediate

Remove the assembler vocabulary from both the context vocabulary list and the hidden
vocabulary list. Make the assembler vocabulary the head of the context vocabulary list. An
ambiguous condition exists if the assembler vocabulary was not included in one of the two
vocabulary lists before assembler is executed.

assign (complex complex-definition --)

Assigns the value of complex to complex—-definition. complex—-definition will
from now on compile the value of complex as a literal.

assign (double double-definition --)

Assigns the value of double to double-definition. double-definition will from
now on compile the value of double as a literal.

assign (float float-definition --)

Assigns the value of float to float-definition. float-definition will from now on
compile the value of f1oat as a literal.

assign (single single-definition --)

Assigns the value of single to single-definition. single-definition will from
now on compile the value of single as a literal.

at-xy (unsigned unsigned --)

Within the console window, position the cursor at the column number specified be the first
unsigned and the row number specified be the second unsigned. The next character displayed

StrongForth 3.1 Glossary: forth 64

will appear at this position. The upper left corner of the console window has column zero and row
zero. An exception is thrown if invalid column or row numbers are specified.

atan (complex -- 1lst)

1st is the principal radian angle whose tangent is complex. This operation is based on complex
floating-point numbers.

atan (float -- 1st)

1st is the principal radian angle whose tangent is f1oat.

atan2 (float float -- 1lst)

1st is the radian angle whose tangent is the first f1oat divided by the second f1oat. An
ambiguous condition exists if both parameters £ 1oat are zero.

atanh (complex -- 1lst)

1st is the floating-point value whose hyperbolic tangent is complex. This operation is based on
complex floating-point numbers.

atanh (float -- 1st)

1st is the floating-point value whose hyperbolic tangent is £1oat. An ambiguous condition
exists if the absolute value of f1oat is greater than one.

attributes! (logical definition --)

Set the attributes given by 1ogical within definition. Note that there’s no direct way to
clear attributes of definition once they have been set.

attributes? (data-type data-type -- flag)

flagis true if and only if at least one of the attributes of the first data-type is set in the
second data-type as well.

attributes? (logical definition -- flag)

flagis true if and only if at least one of the attributes given by 1ogical is set within
definition.

base (-- caddress -> unsigned)

caddress -> unsigned is the address of the current number-conversion radix (2...36).

begin (-- destination) compile-only

Compilation: Create and initialize destination and save a copy of the compiler data type heap.
Append the runtime semantics given below to the current definition.

StrongForth 3.1 Glossary: forth 65

complex.sf

float.sf

complex.sf

float.sf

strongforth.sf

strongforth.sf

Runtime: Continue execution.

begin-compilation (--)

Enter compilation state. Empty and unlock the compiler data type heap. Set #1ocals to zero.

begin-loop (local-definition -- do-destination)

Create and initialize do-destination and save a copy of the compiler data type heap. Make
local-definition the loop index by assigning do-destination as the destination of the
associated do loop.

begin-structure ("<spaces>name" -- structure-attributes object-
size)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. The definition identifies a new data type that is a direct
subtype of structure. Assign the attributes of the new data type to this-attributes.
structure-attributes is the data type attributes associated with the new data type.
object-size is zero.

name Execution: (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with the new data type.

bin (fam -- 1lst)

Modify fam to additionally select a “binary” file access method, and return it as 1st.

binary (--)

Set the number-conversion radix to 2 (binary).

bit (unsigned -- logical)

The bit at position unsigned of logical is 1. All other bits of 1ogical are 0.

bl (-- character)

character is the space character.

blank (caddress -> character unsigned --)

If unsigned is greater than zero, store the character value for space in unsigned consecutive
character positions beginning at caddress -> character.

blk (block-input-stream -- address -> unsigned)

address -> unsigned is the address of a cell containing the number of the block being
interpreted.

blk is a member of the block-input-stream class.

StrongForth 3.1 Glossary: forth 66

strongforth.sf

struct.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

block.sf

blk# (-- address -> unsigned) block.sf

address -> unsigned is the address of a cell containing the number of the block that is
stored in the block buffer, or zero if the block buffer is currently unused.

block (unsigned -- caddress -> character) block.sf
If the block buffer is unassigned, transfer block unsigned from the block file to the block buffer.

If block unsigned is not already in the block buffer, and the block buffer is assigned but has not
been modified, transfer block unsigned from the block file to the block buffer.

If block unsigned is not already in the block buffer, and the block buffer is assigned and has
been modified, transfer the block to the block file and then transfer block unsigned from the
block file to the block buffer.

Assign block unsigned to the block buffer. caddress -> character is the address of the
block buffer. An exception is thrown if unsigned is not a valid block number.

block-buffer (-- caddress -> character) block.sf

caddress -> character is the address of a single buffer for ¢ /b characters, called block
buffer. This buffer is always used when transferring a block from or to the block file.

block-file (-- file) block.sf

file is the file containing all blocks.

block-input-stream (stack-diagram -- 1lst) block.sf

When used in a stack diagram, specifies an input or output parameter with data type block-
input-stream.

block-input-stream (unsigned block-input-stream -- 2nd) block.sf

Initialize block-input-stream by erasing all members. Make unsigned the number of the
block to be interpreted. Transfer block unsigned from the block file to the block buffer. Make
the block buffer the input buffer. 2nd is block-input-stream. An exception is thrown if
unsigned is not a valid block number.

block-input-stream is a constructor of the block-input-stream class.

bmember-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type bmember-
definition.

bmember-definition (unsigned unsigned caddress -> character
unsigned member-definition -- 6 th)

Initialize bmember-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update 1atest. Links will be removed when bmember-

StrongForth 3.1 Glossary: forth 67

definition is deleted. The first unsigned is the length of the new member in bits. The
second unsigned is the position of the new member in bits with respect to the start address of the
object. Assign bmember—-definition aname given by the character string caddress ->
character unsignedandreturnitas 6 th.

bmember-definition is the constructor of the bmember-definition class.

body! (address created-definition --)
Specifies address as the data field of created-definition.

body! is a method of class created-definition.

body-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)
flagis true if and only if the value of single is the data field of definition.

Note: Provide search-criterion to search in order to find a created definition with a
specific data field.

break (--)

Breaks execution. Used for debugging purposes only.

buffer (unsigned -- caddress -> character)

If block unsigned is not already in the block buffer, and the block buffer is assigned and has
been modified, transfer the block to the block file.

Assign block unsigned to the block buffer. caddress -> character is the address of the
block buffer. An exception is thrown if unsigned is not a valid block number.

buffer: (unsigned "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. Allocate unsigned
address units in the definition's data field.

name Execution: Execute the definition name. The default execution semantics of the new
definition is placing the address of its data field onto the stack.

Note that the stack diagram of the new definition has to be explicitly specified. The execution
semantics may be extended by does> or ; code.

bye (--)

Terminate StrongForth with result code zero and return control to the operating system.

bye (integer --)

StrongForth 3.1 Glossary: forth 68

strongforth.sf

block.sf

strongforth.sf

Terminate StrongForth with result code integer and return control to the operating system.

byte? (integer -- flag)

flagis true if and only if integer can be represented as an unsigned byte-size integer, i. €.,
its value is between 0 and 255.

byte? (signed -- flag)

flagis true if and only if signed can be represented as a signed byte-size integer, i. e., its
value is between -128 and +127.

c, (single --)

Reserve space for one character in the default memory space and store single truncated to
character size in it. If the default memory space is character aligned when ¢, begins execution, it
will remain character aligned when c, finishes execution. An ambiguous condition exists if the
first unused address of the default memory space is not character aligned prior to execution of c, .
An exception is thrown if the default memory space overflows.

c, (single memory-space --)

Reserve space for one character in memory-space and store single truncated to character size
in it. If memory-space is character aligned when ¢, begins execution, it will remain character
aligned when ¢, finishes execution. An ambiguous condition exists if the first unused address of
memory-space is not character aligned prior to execution of ¢, . An exception is thrown if
memory-space overflows.

c/b (-- unsigned)

unsigned is 1024, the number of characters per block.

c/1 (-- unsigned)

unsigned is 64, the number of characters in a line of a block.

caddress (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type caddress.

callocate (unsigned -- caddress)

Allocate unsigned address units of contiguous dynamic memory space. The initial content of the
allocated memory space is undefined. If the allocation succeeds, caddress is the aligned starting
address of the allocated memory space. An exception is thrown if the operation fails.

carry? (-- flag)

flagis true if and only if the directly preceding operation caused the processor’s carry flag to
be set.

StrongForth 3.1 Glossary: forth 69

block.sf

strongforth.sf

case (-- endof-origin of-origin) compile-only strongforth.sf

Compilation: Mark the startofa case ... of ... endof ... endcase structure by
putting endof-origin and of-origin onto the stack. Save a copy of the compiler data type
heap. Append the runtime semantics given below to the current definition.

Runtime: Continue execution.

cast (x "<spaces>name" -- y) immediate

Skip leading space delimiters. Parse name delimited by a space. An exception is thrown if name is
not the name of a data type.

Convert x to y, where x is any data type and y is the data type identified by name. If x and y have
the same size, the actual bit image is not changed. If x and y have different sizes, cast uses one
of the following conversion words to adjust the size and bit image of y: s>d, s>f, d>s, d>f, £>s
or £>d. Complex numbers are converted to scalar numbers by calculating their absolute value.
Scalar numbers are converted to complex numbers as their real part, while the imaginary part
becomes zero. These are conversions applied to different combinations of source and destination
data types:

X | y— | single double float complex
single noop s>d s>f s>f 0i+
double d>s noop da>f da>f 0i+
float f>s f>d noop 0i+
complex | abs f>s abs f>d abs noop
catch ("<spaces>name" --) compile-only

Compilation: Skip leading space delimiters. Parse name delimited by a space. Search the context
vocabularies for a definition with the name name, whose input parameters match the compiler data
type heap according to the rules of the StrongForth data type system. An exception is thrown if no
matching definition is found. Append the runtime semantics given below to the current definition.

Runtime: Create and initialize a new exception frame. Execute name. Obtain the error code from
the current exception frame. Delete the current exception frame.

cells (integer -- 1lst)

1st is the size in address units of integer cells.

changed (stack-diagram -- 1lst)

During specification of the stack diagram stack-diagram of a definition, mark a list of
registers as being destroyed by the definition. 1st is equal to stack-diagram. Registers have
to be considered only when programming in assembler.

char ("<spaces>name" -- character) strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. character is the value of
name's first character. If the length of the parsed area is zero, character is the space character.

StrongForth 3.1 Glossary: forth 70

character (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type character.

chars (integer -- 1lst)

1st is the size in address units of integer characters.

chere (-- caddress)

caddress is the first unused address of the default memory space.

chere (memory-space -- caddress)

caddress is the first unused address of memory-space.

class ("<spaces>name" -- vocabulary object-size) strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. Find the data type associated with
name and assign its data type attributes to this-attributes. An exception is thrown if name
is not a class, or if the parent of name has not yet been defined. Initialize the virtual method table
length, the protected vocabulary and the private vocabulary. vocabulary is the current
compilation vocabulary. object-size is the size in bits of objects of the parent class, or zero if
an exception is thrown.

class starts a class definition.

class-attributes (data-type unsigned class-attributes -- 3rd)

Initialize class—-attributes by erasing all members. Store the attributes of data-type as
the parent of the class associated with class-attributes. Store unsigned as the size of the
class associated with class-attributes.

class-attributes is the constructor of the class-attributes class.

class-attributes (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type class-
attributes.

clear? (single logical -- flag)

flagis true if and only if the bit-by-bit logical and of single and 1ogical is equal to zero.

close (file --)

Close the file identified by file.

cmember (object-size single "<spaces>name" -- lst) strongforth.sf

StrongForth 3.1 Glossary: forth 71

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to character size, plus the number of bits in one character.

name 1s referred to as a class member. cmember reserves a character-size class member of the
same data type as single in the class that is currently being defined.

Execution: (x -- caddress -> y)

caddress -> yis the address of a character-size class member of the object x, that were
reserved at the time name was created. v is the actual data type that was provided to cmember as
single.

cmembers (object-size single unsigned "<spaces>name" -- 1lst)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to character size, plus unsigned times the number of bits in one
character.

name is referred to as a class member. cmembers reserves unsigned characters for an array of
unsigned character-size class members of the same data type as single in the class that is
currently being defined.

Execution: (x -- caddress -> y)

caddress -> yis the address of an array of unsigned character-size class members of the
object x, that were reserved at the time name was created. y is the actual data type that was
provided to cmembers as single.

cmove (caddress 1lst unsigned --)

If unsigned is greater than zero, copy unsigned consecutive characters starting at caddress
to that starting at 1 st, proceeding character-by-character from lower addresses to higher
addresses.

cmove> (caddress 1lst unsigned --)

If unsigned is greater than zero, copy unsigned consecutive characters starting at caddress
to that starting at 1 st, proceeding character-by-character from higher addresses to lower
addresses.

code ("<spaces>name" - code-definition)

Skip leading space delimiters. Parse name delimited by a space. Create a code definition for name
with the execution semantics defined below, and make it the latest definition. The runtime code of
the code definition begins at the first unused address of the code-space memory space. An
ambiguous condition exists if code is executed in compilation state.

Subsequent words in the parse area typically represent source code in assembly language,
generating machine code. The new code definition is not automatically added to the current
compilation word list, This can be achieved by executing endcode after the last machine code
instruction.

name Execution: Execute the definition name.

StrongForth 3.1 Glossary: forth 72

strongforth.sf

asm.sf

Note that the new code definition does have no stack effects by default. Stack effects have to be
specified separately if they are intended. By specifying a stack diagram (... -- ...)
immediately following code and the definition name, the new definition is modified to incorporate
stack effects.

code-definition (caddress -> character unsigned code-definition -
- 4 th)

Initialize code-definition by erasing all members. Establish a link to the previous definition
in the current vocabulary and update Latest. Links will be removed when code-definition
is deleted. Store the first unused address of the code—-space memory space as the address of the
first machine code instruction of code-definition. Assign code-definition a name
given by the character string caddress -> character unsignedandreturnitas 4 th.

code-definition is a constructor of the code-definition class.

code-definition (code-definition -- 1lst)

Initialize code-definition by erasing all members. Establish a link to the previous definition

in the current vocabulary and update Latest. Links will be removed when code-definition
is deleted. Store the first unused address of the code—-space memory space as the address of the

first machine code instruction of code-definition. Return code-definitionas 1st.

code-definition is a constructor of the code-definition class.

code-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type code-
definition.

code-definition (virtual-definition token code-definition -- 3rd

)

Initialize code-definition by erasing all members. Copy the attributes of virtual-
definition. Store token as the address of the first machine code instruction of code-
definition. Return code-definition as 3rd.

code-definition is a constructor of the code-definition class.

code-space (-- memory-space)

memory-space is the system’s code space. Executable code is stored in the code space.

colon-definition (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type colon-
definition.

compare (caddress -> character unsigned 1lst 3rd -- signed)

StrongForth 3.1 Glossary: forth 73

strongforth.sf

Compare the string specified by caddress -> character unsigned to the string specified
by 1st 3rd. The strings are compared, beginning at the given addresses, character by character,
up to the length of the shorter string or until a difference is found.

If the two strings are identical, signed is zero.

If the two strings are identical up to the length of the shorter string, signedis -1 if unsignedis
less than 3rd, and +1 otherwise.

If the two strings are not identical up to the length of the shorter string, signed is -1 if the first
non-matching character in the string specified by caddress -> character unsigned has
a lesser numeric value than the corresponding character in the string specified by 1st 3rd, and
+1 otherwise.

compile, (definition --)

In interpretation state, apply the stack effect of definition to the interpreter data type heap and
execute the semantics of definition.

In compilations state, apply the stack effect of definition to the compiler data type heap and
append the semantics of definition to the runtime semantics of the current definition.

compile-only (--)

Make the latest definition a compile-only word. The interpreter finds this definition only if in
compilation state, and executes it like an immediate word.

compiler-workspace (compiler-workspace -- 1lst)

Initialize compiler-workspace by emptying its data type reference table. In interpretation
state (state is false), save the interpreter data type heap pointer. In compilation state (state
is false), save the compiler data type heap pointer.

compiler-workspace is the constructor of the compiler-workspace class.

compiler-workspace (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type compiler-
workspace.

complex (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type complex.

complex-definition (caddress -> character unsigned complex-
definition -- 4 th)

Initialize complex—-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update 1atest. Links will be removed when complex-
definition is deleted. Assign complex-definition a name given by the character string
caddress -> character unsignedandreturnitas 4 th.

complex-definition is a constructor of the complex-definition class.

StrongForth 3.1 Glossary: forth 74

strongforth.sf

complex-definition (complex-definition -- 1lst)

Initialize complex-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update 1atest. Links will be removed when complex—
definition is deleted.

complex-definition is a constructor of the complex-definition class.

complex-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type complex-
definition.

conj (complex -- 1lst)

1st is the conjugate complex number of the complex floating-point number complex.

constant (complex "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. name is referred to as a constant.

Execution: (-—- x)

Place x on the stack. x has the same data type as was supplied to constant as complex.

constant (double "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. name is referred to as a constant.

Execution: (-- x)

Place x on the stack. x has the same data type as was supplied to constant as double.

constant (float "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. name is referred to as a constant.

Execution: (-- x)

Place x on the stack. x has the same data type as was supplied to constant as float.

constant (single "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. name is referred to as a constant.

Execution: (-- x)

Place x on the stack. x has the same data type as was supplied to constant as single.

context (-- address -> vocabulary)

StrongForth 3.1 Glossary: forth 75

complex.sf

complex.sf

strongforth.sf

float.sf

strongforth.sf

address -> vocabulary is the address of an object indicating the vocabulary that is
searched first by search-context and all words using it. This vocabulary is actually the head
of a linked list of vocabularies that are searched in the given order. The list of vocabularies is
referred to as the context vocabulary list.

control-flow (control-flow -- 1lst)

Initialize control-f1low by erasing all members. If the compiler data type heap is not locked,
save a copy of the present compiler data type heap. Save the value of the code-space memory
space pointer as the code origin or code destination.

control-flow is the constructor of the control-f1low class.

control-flow (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type control-
flow.

copy (object 1lst --)

Copy all members of object to 1st. If object and 1st have different memory sizes, the
minimum number of members are copied and the remaining members are not copied or remain
unchanged.

cos (complex -- 1lst) complex.sf

1st is the complex cosine of the radian angle complex.

cos (float -- 1st)

1st is the cosine of the radian angle f1loat.

cosh (complex -- 1lst) complex.sf

1st is the complex hyperbolic cosine of complex.

cosh (float -- 1lst) float.sf

1st is the hyperbolic cosine of f1loat.

count (caddress -> character -- 1lst unsigned) strext.sf

Return the character string specification for the counted string stored at caddress ->
character. 1st is the address of the first character after caddress -> character.
unsigned is the numeric value of the character at caddress -> character, which is the
length in characters of the string at 1st.

cr (—--)

Send a carriage return character followed by a line feed character to the default output stream.

StrongForth 3.1 Glossary: forth 76

create ("<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. create does not
allocate memory in the definition's data field.

name Execution: Execute the definition name. The default execution semantics of the new
definition is placing the address of its data field onto the stack.

Note that the stack diagram of the new definition has to be explicitly specified. The execution
semantics may be extended by does> or ; code.

create (caddress -> character unsigned fam -- file)

Create a file with the name given by the character string caddress -> character
unsigned, and open it as £ile with file access method fam. If a file with the same name
already exists, recreate it as an empty file. An exception is thrown if r/o is specified as the file
access method or if the operation fails.

create-index (-- local-definition)

Search the locals vocabulary for a local with the name i. If it exists, rename it to j. Create a new
local with the name i in the locals vocabulary.

created-definition (caddress -> character unsigned created-
definition -- 4 th)

Initialize created-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update 1atest. Links will be removed when created-
definition is deleted. Assign created-definition a name given by the character string
caddress -> character unsignedandreturnitas 4 th.

created-definition is a constructor of the created-definition class.

created-definition (created-definition -- 1lst)

Initialize created-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update 1atest. Links will be removed when created-
definition is deleted. Return created-definitionas 1st.

created-definition is a constructor of the created-definition class.

created-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type created-
definition.

created-definition? (address -- created-definition flag)

Search for a definition that was created with create and whose data field is equal to address.
If such a definition exist, created-definition is the definition and flag is true.
Otherwise, created-definitionisnulland flagis false.

StrongForth 3.1 Glossary: forth 77

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

created-definition? (definition -- created-definition flag)

created-definitionisdefinition. flagis trueifandonly if definition was
defined by create.

ctrl ("<spaces>name" -- character)

Skip leading space delimiters. Parse name delimited by a space. character is the ASCII control
character the keyboard generates when typing name's first character while holding the CTRL key.
An exception is thrown if name's first character is not a lowercase or uppercase letter. If the length
of the parsed area is zero, character is the null character.

current (-- address -> vocabulary)

address -> vocabulary is the address of an object indicating the vocabulary to which new
definitions are added.

current-exception-frame (-- address -> exception-frame)

address -> exception-frame is the address of an object indicating the current lowest-
level exception frame.

cvariable (single "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve one character of the data-space memory space
and store single at the address.

name 1is referred to as a variable.
Execution: (-- caddress -> x)

caddress -> xis the address of the reserved character. x has the same data type as was
supplied to cvariable as single.

cvariables (single unsigned "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve unsigned characters of the data-space
memory space and store single in each of them.

name is referred to as a variable.
Execution: (—-- caddress -> x)

caddress -> xis the address of the first reserved character. x has the same data type as was
supplied to cvariable as single.

d>f (double -- float)

float is the floating-point equivalent of the unsigned double number double. An ambiguous
condition exists if double cannot be precisely represented as a floating-point value.

StrongForth 3.1 Glossary: forth 78

ascii.sf

strongforth.sf

strongforth.sf

d>f (signed-double -- float)

float is the floating-point equivalent of the signed double number signed-double. An
ambiguous condition exists if signed-double cannot be precisely represented as a floating-
point value.

d>s (double -- single)

single is the numeric equivalent of double. An ambiguous condition exists if double lies
outside the range of a single number.

d>s (integer-double -- integer)

integer is the numeric equivalent of integer—double. An ambiguous condition exists if
integer lies outside the range of a single number.

d>s (signed-double -- signed)

signed is the numeric equivalent of signed-double. An ambiguous condition exists if
signed lies outside the range of a single signed number.

d>s (unsigned-double -- unsigned)

unsigned is the numeric equivalent of unsigned-double. An ambiguous condition exists if
unsigned lies outside the range of a single unsigned number.

data-space (-- memory-space)

memory-space is the system’s data space. Variables, values, floating-point literals, character
strings and arrays are stored in the data space.

data-type (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type data-type.

data-type-attributes (data-type unsigned data-type-attributes --
3rd)

Initialize data-type—-attributes by erasing all members. Store the attributes of data-—
type as the parent of the data type associated with data-type-attributes. Store
unsigned as the size of the data type associated with data-type-attributes.

data-space-attributes is the constructor of the data-space-attributes class.

data-type-attributes (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type data-type-
attributes.

StrongForth 3.1 Glossary: forth 79

data-type? (definition -- data-type flag)

If definition was created by procreates, data-type is the data type it is associated with,
and flag is true. Otherwise, data-typeisnull and flagis false.

decimal (--)

Set the number-conversion radix to 10 (decimal).

default (input-stream --)

Make input-stream the present default input stream.

default (memory-space --)

Make memory-space the present default memory space.

default (output-stream --)

Make output-stream the present default output stream.

default-input-stream (-- address -> input-stream)

address -> input-streamis the address of an object indicating the present default input
stream.

default-memory-space (-- address -> memory-space)

address -> memory-space is the address of an object indicating the present default memory
space.

default-output-stream (-- address -> output-stream)

address -> output-stream is the address of an object indicating the present default output
stream.

defer ('<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition.

name Execution: Execute the definition that has been assigned to name by a succeeding execution
of defer! or is. name is called a deferred definition. An exception is thrown if name is
executed before it has been assigned an execution semantics by defer! or is.

Note that the new definition does have no stack effects by default. Stack effects have to be
specified separately if they are intended. By using a stack diagram phrase (... -- ...)
immediately following de fer and the definition name, the new definition is modified to
incorporate stack effects.

defer! (token deferred-definition --)

StrongForth 3.1 Glossary: forth 80

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

Set deferred-definition to execute token. An ambiguous condition exists if token is
not for a definition defined by defer.

defer@ (deferred-definition -- token)

token is the execution token deferred-definition is set to execute.

deferred-definition (address -> token caddress -> character
unsigned deferred-definition -- 6 th)

Initialize deferred-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update 1atest. Links will be removed when
deferred-definitionis deleted. address -> token is the address of the token that is to
be executed or compiled by the deferred definition. Assign deferred-definition a name
given by the character string caddress -> character unsignedandreturnitas 6 th.

Execution: Execute the execution token that deferred-definition is set to execute. An
exception is thrown if deferred-definition has not been set to execute an execution token.

deferred-definition is the constructor of the deferred-definition class.

deferred-definition (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type deferred-
definition.

definition (caddress -> character unsigned definition -- 4 th)

Initialize definition by erasing all members. Establish a link to the previous definition in the
current vocabulary and update 1atest. Links will be removed when definition is deleted.
Assign definition aname given by the character string caddress -> character
unsignedand returnitas 4 th.

definition is a constructor of the definition class.

definition (caddress -> character unsigned definition definition
-- 5 th)

Initialize the second definition by copying all members of the first definition. For the
second definition, establish a link to the previous definition in the current vocabulary and
update latest. Links will be removed when definition is deleted. Assign the second
definition aname given by the character string caddress -> character unsigned.
Clear the stack diagram of the second definition and returnitas 5 th.

definition is a constructor of the definition class.

definition (definition -- 1lst)

Initialize definition by erasing all members. Establish a link to the previous definition in the
current vocabulary and update 1atest. Links will be removed when definition is deleted.
Return definition as 1st.

definition is a constructor of the definition class.

StrongForth 3.1 Glossary: forth 81

definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type
definition.

definitions (--) strongforth.sf
Make the current compilation vocabulary the same as the head of the context vocabulary list.

definitions specifies that the names of subsequent definitions will be placed in the current
compilation vocabulary. Subsequent changes in the current compilation vocabulary will not affect
the vocabularies of already compiled definitions.

delete (caddress -> character unsigned --) strongforth.sf

Delete the file with the path given by the string caddress -> character unsigned. An
exception is thrown if the operation fails.

delete (object --)

Return all dynamic memory occupied by object to the system. An ambiguous condition exists if
object was not allocated from dynamic memory.

delete is a virtual method of the object class.

delimiter (-- character) strext.sf

character is the delimiter used by unescape and substitute. It is initialized with %
(percent character). Since delimiter is a value, it can be reassigned by to.

destination (destination -- 1lst)

Initialize destination by erasing all members. If the compiler data type heap is not locked,
save a copy of the present compiler data type heap. Save the value of the code-space memory
space pointer as the code destination.

destination is the constructor of the destination class.

destination (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type
destination.

df, (complex --)

Reserve space for two double-precision floating-point numbers in the default memory space and
store complex as a complex double-precision floating-point number in it. If the first unused
address of the default memory space is cell aligned prior to execution of df, , it will remain cell
aligned when df, finishes execution. An ambiguous condition exists if the first unused address of
the default memory space is not cell aligned prior to execution of df, . An exception is thrown if
the default memory space overflows.

StrongForth 3.1 Glossary: forth 82

df, (complex memory-space --)

Reserve space for two double-precision floating-point numbers in memory-space and store
complex as a complex double-precision floating-point number in it. If the first unused address of
memory-space is cell aligned prior to execution of df, , it will remain cell aligned when df,
finishes execution. An ambiguous condition exists if the first unused address of memory-space
is not cell aligned prior to execution of df, . An exception is thrown if memory-space
overflows.

df, (float --)

Reserve space for a double-precision floating-point number in the default memory space and store
float as a double-precision floating-point number in it. If the first unused address of the default
memory space is cell aligned prior to execution of df,, it will remain cell aligned when df,
finishes execution. An ambiguous condition exists if the first unused address of the default memory
space is not cell aligned prior to execution of df, . An exception is thrown if the default memory
space overflows.

df, (float memory-space --)

Reserve space for a double-precision floating-point number in memory-space and store float
as a double-precision floating-point number in it. If the first unused address of memory-space is
cell aligned prior to execution of df,, it will remain cell aligned when df, finishes execution. An
ambiguous condition exists if the first unused address of memory-space is not cell aligned prior
to execution of df, . An exception is thrown if memory-space overflows.

dfaddress (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type dfaddress.

dfalign (--) float.sf

If the first unused address of the default memory space is not double-precision float aligned,
reserve the required number of address units to make it double-precision float aligned.

dfalign (memory-space --) float.sf

If the first unused address of memory-space is not double-precision float aligned, reserve the
required number of address units to make it double-precision float aligned.

dfaligned (address -- 1st) float.sf

1st is the lowest double-precision float aligned address greater than or equal to address.

dfallocate (unsigned -- dfaddress)

Allocate unsigned address units of contiguous dynamic memory space. The initial content of the
allocated memory space is undefined. If the allocation succeeds, dfaddress is the aligned
starting address of the allocated memory space. An exception is thrown if the operation fails.

StrongForth 3.1 Glossary: forth 83

dfhere (-- dfaddress)

dfaddress is the first unused address of the default memory space.

dfhere (memory-space -- dfaddress)

dfaddress is the first unused address of memory-space.

dfloats (integer -- 1st) float.sf

1st is the size in address units of integer double-precision floating-point numbers.

dfmember (object-size complex '"<spaces>name" -- 1lst) complex.sf

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to double-precision floating-point numbers, plus the size in bits of two
double-precision floating-point numbers.

name is referred to as a class member. dfmember reserves space for two double-precision
floating-point numbers for a class member of the same data type as complex in the class that is
currently being defined.

Execution: (x -- dfaddress -> y)

dfaddress -> yis the address of the class member of the object x, that was reserved at the
time name was created. y is the actual data type that was provided to dfmember as complex.

dfmember (object-size float "<spaces>name" -- 1lst) float.sf

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to double-precision floating-point numbers, plus the size in bits of a
double-precision floating-point number.

name is referred to as a class member. dfmember reserves space for one double-precision
floating-point number for a class member of the same data type as £1oat in the class that is
currently being defined.

Execution: (x -- dfaddress -> y)

dfaddress -> yis the address of the class member of the object x, that was reserved at the
time name was created. y is the actual data type that was provided to dfmember as float.

dfmembers (object-size complex unsigned "<spaces>name" -- lst) complex.sf

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to double-precision floating-point numbers, plus unsigned times the
size in bits of a complex double-precision floating-point number.

name is referred to as a class member. dfmembers reserves unsigned complex double-
precision floating-point numbers for an array of unsigned class members of the same data type
as complex in the class that is currently being defined.

StrongForth 3.1 Glossary: forth 84

Execution: (x -- dfaddress -> y)

dfaddress -> yis the address of an array of unsigned class members of the object x, that
were reserved at the time name was created. y is the actual data type that was provided to
dfmember as complex.

dfmembers (object-size float unsigned "<spaces>name" -- 1lst)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to double-precision floating-point numbers, plus unsigned times the
size in bits of a double-precision floating-point number.

name is referred to as a class member. dfmembers reserves unsigned double-precision
floating-point numbers for an array of unsigned class members of the same data type as float
in the class that is currently being defined.

Execution: (x -- dfaddress -> y)

dfaddress -> yis the address of an array of unsigned class members of the object x, that
were reserved at the time name was created. y is the actual data type that was provided to
dfmember as float.

dfvariable (complex "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve space for two double-precision floating-point
numbers at a double-precision floating-point aligned address in the data—-space memory space
and store complex at the address.

name is referred to as a variable.
Execution: (-- dfaddress -> x)

dfaddress -> xis the address of the complex double-precision floating-point number. x has
the same data type as was supplied to variable.

dfvariable (float "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve space for a double-precision floating-point number
at a double-precision floating-point aligned address in the data—-space memory space and store
float at the address.

name 1is referred to as a variable.
Execution: (—-- dfaddress -> x)

dfaddress -> xis the address of the double-precision floating-point number. x has the same
data type as was supplied to variable.

dfvariables (complex unsigned "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve space for unsigned complex double-precision

StrongForth 3.1 Glossary: forth 85

float.sf

complex.sf

float.sf

complex.sf

floating-point numbers at a double-precision floating-point aligned address in the data-space
memory space and store complex in each of them.

name is referred to as a variable.
Execution: (-- dfaddress -> x)

dfaddress -> xis the address of the first complex double-precision floating-point number. x
has the same data type as was supplied to variable.

dfvariables (float unsigned "<spaces>name" --) float.sf

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve space for unsigned double-precision floating-
point numbers at a double-precision floating-point aligned address in the data-space memory
space and store £ 1oat in each of them.

name is referred to as a variable.
Execution: (-- dfaddress -> x)

dfaddress -> xis the address of the first double-precision floating-point number. x has the
same data type as was supplied to variable.

digit? (character -- unsigned flag)

Converts character into a digit unsigned. Characters 0 to 9 are converted into digits 0 to 9,
and characters a to z or A to Z are converted into digits 10 to 35, respectively. flagis true if
character is alphanumeric and the conversion result is less than the number-conversion radix
base. Otherwise flag is false and the value of unsigned is undefined.

do (-- do-destination) compile-only strongforth.sf

Compilation: Create and initialize do-destination and save a copy of the compiler data type
heap. Rename the loop index i into j, if it already exists, and define a new local i as loop index.
Append the runtime semantics given below to the current definition. The semantics are incomplete
until resolved by a consumer of do-destination such as 1oop, +1oop and -1 oop.

Runtime: (integer 1st —--) or (address 1st —-)

Initialize the loop control parameters with limit integer or address and index 1st, and
continue execution.

do-destination (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type do-
destination.

does-data-type (--) strongforth.sf

Finish the latest definition by specifying the execution semantics given below. An exception is
thrown if the latest definition was not created by create. An ambiguous condition exists if the
data field of the latest definition does not contain a data-type-attributes object.

Execution: (stack-diagram —-- 1st)

StrongForth 3.1 Glossary: forth 86

When used in a stack diagram, specifies an input or output parameter with the data type associated
with the data-type-attributes object in the data field.

does-vocabulary (--)

Finish the latest definition by specifying the execution semantics given below. An exception is
thrown if the latest definition was not created by create. An ambiguous condition exists if the
data field of the latest definition does not contain a vocabulary object.

Execution: Remove the vocabulary object in the data field from both the context vocabulary list
and the hidden vocabulary list. Make the vocabulary object the head of the context vocabulary
list. An ambiguous condition exists if the vocabulary object is not included in one of the two
vocabulary lists.

does> (colon-definition -- 1lst) compile-only

Compilation: Append the runtime semantics given below to the current definition. An exception is
thrown if the contents of the compiler data type heap do not exactly match the output parameters of
the current definition. Append the initiation semantics given below to the current definition.

Runtime: Specify the execution semantics of the most recent definition, referred to as name, as
given below. Return control to the calling definition.

Initiation: Place the address of name's data field on the stack.

name Execution: Execute the portion of the definition that begins with the initiation semantics
appended by the does> which modified name.

Note that name does have no stack effects by default. Stack effects have to be specified explicitly.
By using a stack diagram phrase immediately following does>, name is modified to incorporate
stack effects. Specifying a stack diagram is mandatory, because at least the data type of name's
data field address has to be present. The data field address is always the last input parameter. The
stack effect of name is defined by the stack diagram following doe s>, omitting the data field
address.

double (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type double.

double-definition (caddress -> character unsigned double-
definition -- 4 th)

Initialize double-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update 1atest. Links will be removed when double-
definition is deleted. Assign double—-definition aname given by the character string
caddress -> character unsignedandreturnitas 4 th.

double-definition is a constructor of the double-definition class.

double-definition (double-definition -- 1lst)

Initialize double-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update 1atest. Links will be removed when double-
definition is deleted.

StrongForth 3.1 Glossary: forth 87

strongforth.sf

strongforth.sf

double-definition is a constructor of the double-definition class.

double-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type double-
definition.

drop (complex --)

Remove complex from the stack.

drop (double --)

Remove double from the stack.

drop (float --)

Remove float from the stack.

drop (single --)

Remove single from the stack.

dt ("<spaces>name" -- data-type)

Skip leading space delimiters. Parse name delimited by a space. Search all vocabularies for a
definition with this name that was created by procreates. If such a definition is found, return
the data type the definition is associated with as data-type. An exception is thrown if name is
not the name of a data type, and data—-type is null.

dt-allot (--)

In interpretation state (state is false), reserve space for one basic data type on the interpreter
data type heap. In compilation state (state is true), reserve space for one basic data type on the
compiler data type heap. An exception is thrown if the respective data type heap overflows.

dt-allot (integer --)

In interpretation state (state is false), reserve space for integer basic data types on the
interpreter data type heap. In compilation state (state is true), reserve space for integer
basic data types on the compiler data type heap. An exception is thrown if the respective data type
heap overflows.

dt-bottom (-- address -> data-type)

In interpretation state (state is false), address -> data-type is the bottom of the
interpreter data type heap. In compilation state (state is true), address -> data-typeis
the bottom of the compiler data type heap.

StrongForth 3.1 Glossary: forth 88

dt-compare (address -> data-type unsigned 1lst 3rd -- flag) strongforth.sf

Compare the unsigned basic data types stored at address -> data-type with the 3rd
basic data types stored at address 1st. flagis true if and only if 3rd is equal to unsigned
and all basic data types are one by one identical. Data type attributes other than the prefix and the
reference attributes are not considered.

dt-depth (-- unsigned)

In interpretation state (state is false), unsigned is the number of basic data types on the
interpreter data type heap. In compilation state (state is true), unsigned is the number of
basic data types on the compiler data type heap. An ambiguous condition exists if the compiler data
type heap is locked and state is true.

dt-drop (--)

In interpretation state (state is false), remove the topmost compound data type from the
interpreter data type heap. In compilation state (state is true), remove the topmost compound
data type from compiler data type heap. An exception is thrown if the respective data type heap is
empty prior to executing dt-drop.

dt-here (-- address -> data-type)

In interpretation state (state is false), address -> data-type is the first unused address
of the interpreter data type heap. In compilation state (state is true), address -> data-
type is the first unused address of the compiler data type heap.

dt-init (--)

In interpretation state (state is false), empty the interpreter data type heap. In compilation
state (state is true), unlock and empty the compiler data type heap.

dt-length (address -> data-type -- unsigned)

unsigned is the number of basic data types the compound data type stored at address ->
data-type consist of.

dt-lock (--)

In compilation state (state is true), lock the compiler data type heap to prevent further usage
until its previous state is restored. While being locked, dt —here returns a null pointer in
compilation state.

dt-next (address -> data-type -- 1lst)

1stis address -> data-type plus the size in address units of the compound data type
stored at address -> data-type.

dt-prefix (-- data-type)

StrongForth 3.1 Glossary: forth 89

data-type is a null data type with the prefix attribute. The prefix attribute is set in all but the last
basic data types of a compound data type.

dt-reference (-- data-type)

data-type is a null data type with the reference attribute. The reference attribute is set in data
types diagram that reference previous data types within the same stack diagram.

dt-restore (--) strongforth.sf

In interpretation state, restore a compound data type that has been dropped from the interpreter data
type heap. In compilation state, restore a compound data type that has been dropped from the
compiler data type heap.

dt-stripped (address -> data-type unsigned -- 1lst 3rd)

address -> data-type is the address of a list of unsigned basic data types which may
contain compound data types linked by prefix attributes. 1st is equal to address. 3rdis
unsigned minus the number of basic data types in the last compound data type in the list. If
unsigned is zero, 3rd is zero as well.

dump (address -> double unsigned --) strongforth.sf

Send two times unsigned consecutive cells starting at address -> double to the default
output stream, formatted as a sequence of eight-digit hexadecimal numbers. If necessary, multiple
lines are sent. Each line contains the hexadecimal starting address and the contents of up to 4
memory cells.

dump (address unsigned --) strongforth.sf

Send unsigned consecutive cells starting at address to the default output stream, formatted as
a sequence of eight-digit hexadecimal numbers. If necessary, multiple lines are sent. Each line
contains the hexadecimal starting address and the contents of up to 4 memory cells.

dump (caddress unsigned --) strongforth.sf

Send unsigned consecutive characters starting at caddress to the default output stream,
formatted as a sequence of two-digit hexadecimal numbers. If necessary, multiple lines are sent.
Each line contains the hexadecimal starting address and the contents of up to 16 character-size
memory cells.

dup (complex -- 1lst 1lst)

Duplicate complex.

dup (double -- 1lst 1lst)

Duplicate double.

dup (float -- 1st 1st)

StrongForth 3.1 Glossary: forth 90

Duplicate f1oat.

dup (single -- 1lst 1lst)

Duplicate single.

e. (complex --) complex.sf

Send the real part and the imaginary part of complex with a trailing space using engineering
notation to the default output stream. The significands are greater than or equal to 1.0 and less than
1000.0, and the decimal exponent is a multiple of three:

exponential notation := <re> + <im> i

<re> = <significand><exponent>

<im> = <significand><exponent>

<significand> = [-]<digits>.<digits0>

<exponent> = e[-]<digit><digit><digit>

<digits> = <digit><digits0>

<digitsO0> = <digit>~*

<digit> ={0 |l 1T 12131415161 7181]29:}

An exception is thrown if the value of the number-conversion radix base is not (decimal) 10.

e. (float --) float.sf

Send float with a trailing space using engineering notation to the default output stream. The
significand is greater than or equal to 1.0 and less than 1000.0, and the decimal exponent is a
multiple of three:

exponential notation := <significand><exponent>

<significand> = [-]<digits>.<digits0>

<exponent> = e[-]<digit><digit><digit>

<digits> := <digit><digits0>

<digits0> = <digit>*

<digit> :={ 01 201211 314151 6117128191}

An exception is thrown if the value of the number-conversion radix base is not (decimal) 10.

eax/edx: (stack-diagram -- 1lst)

When used in a stack diagram, specifies the succeeding input or output parameter shall be assigned
to double register eax/edx (if it occupies a double cell) or to either register eax or register edx
(if it occupies a single cell). An exception is thrown if the input or output parameter does not fit
into a single register or a register pair.

eax: (stack-diagram -- 1lst)

When used in a stack diagram, specifies the succeeding input or output parameter shall be assigned
to register eax. An exception is thrown if the input or output parameter does not fit into a single
register.

ebx/ecx: (stack-diagram -- 1lst)

StrongForth 3.1 Glossary: forth 91

When used in a stack diagram, specifies the succeeding input or output parameter shall be assigned
to double register ebx /ecx (if it occupies a double cell) or to either register ebx or register ecx
(if it occupies a single cell). An exception is thrown if the input or output parameter does not fit
into a single register or a register pair.

ebx: (stack-diagram -- 1st)

When used in a stack diagram, specifies the succeeding input or output parameter shall be assigned
to register ebx. An exception is thrown if the input or output parameter does not fit into a single
register.

ecx: (stack-diagram -- 1lst)

When used in a stack diagram, specifies the succeeding input or output parameter shall be assigned
to register ecx. An exception is thrown if the input or output parameter does not fit into a single
register.

edi: (stack-diagram -- 1st)

When used in a stack diagram, specifies the succeeding input or output parameter shall be assigned
to register edi. An exception is thrown if the input or output parameter does not fit into a single
register.

edx: (stack-diagram -- 1lst)

When used in a stack diagram, specifies the succeeding input or output parameter shall be assigned
to register edx. An exception is thrown if the input or output parameter does not fit into a single
register.

eflags: (stack-diagram -- 1lst)

When used in a stack diagram, specifies the succeeding input or output parameter shall be assigned
to a flag in the processor status register. An exception is thrown if the input or output parameter
cannot be represented by a flag.

ekey (-- keyboard-event) strongforth.sf

Receive one keyboard event keyboard-event from the user input device.

ekey? (-- flag) strongforth.sf

flagis true if and only if a keyboard event is available at the user input device. The event will
be returned by the next execution of ekey.

After ekey? returns with a value of t rue, subsequent executions of ekey? prior to the execution
of key, key? or ekey also return true, referring to the same event.

ekey>char (keyboard-event -- character flag) strongforth.sf

If the keyboard event keyboard-event corresponds to a character, return its ASCII value as
character and true as f1ag. Otherwise, the value of character is equal to keyboard-
event and flagis false.

StrongForth 3.1 Glossary: forth 92

ekey>fkey (keyboard-event -- unsigned flag)

If the keyboard event keyboard-event corresponds to a special key, return its identification
code as unsigned and true as flag. Otherwise, the value of unsigned is equal to
keyboard-event and flagis false.

else (origin -- 1lst) compile-only

Compilation: Put a new unresolved forward reference 1 st onto the stack and save a copy of the
compiler data type heap. Append the runtime semantics given below to the current definition. The
semantics are incomplete until 1 st is resolved, e. g., by then. Resolve the forward reference
origin using the location following the appended runtime semantics. Restore the compiler data
type heap to the state that was saved when origin was created.

Runtime: Continue execution at the location given by the resolution of 1st.

emit (integer --)

Send the ASCII code of integer to the default output stream.

emit (integer output-stream --)
Send the ASCII code of integer to output-stream.

emit is a virtual method of the output-stream class.

emit? (-- flag)

flagis true if the user output device is ready to accept data and the execution of emit in place
of emit? would not have suffered an indefinite delay.

empty-buffers (--)
Unassign the block buffer. Do not transfer the contents of the block buffer to the block file.

enclosing (local-definition -- do-destination)

If local-definitionisaloop index, do—destination identifies the do loop. Otherwise,
do-destination is null.

enclosing! (do-destination local-definition --)

Make local-definition aloop index by assigning do-destination as the destination of
the associated do loop.

end-compilation (--)

Enter interpretation state. Delete all definitions in the locals vocabulary.

StrongForth 3.1 Glossary: forth 93

strongforth.sf

strongforth.sf

block.sf

end-loop (do-destination local-definition --) strongforth.sf
An ambiguous condition exists if end-1oop is executed in interpretation state.

Delete the loop index 1ocal-definition. Search the locals vocabulary for a local index with
the name j. If it exists, rename it to i. Append the runtime semantics given below to the current
definition, resolving the backward reference do-destination. An exception is thrown if the
contents of the compiler data type heap, after consuming single, do not exactly match the copy
that was saved when do-destination was created.

Runtime: (single —-)

If single is zero, continue execution at the location specified by do-destination.
Otherwise, continue execution.

end-structure (structure-attributes object-size --) struct.sf

Terminate the definition of a structure started by begin-structure.

endcase (endof-origin of-origin --) compile-only strongforth.sf

Compilation: Mark the end of a case ... of ... endof ... endcase structure. Delete
of-origin. Use endof-origin to resolve the entire structure. Compare the current contents
of the compiler data type heap with the one that was saved by the first endof. An exception is
thrown if a difference is detected. Append the runtime semantics given below to the current
definition.

Runtime: Continue execution.

Note that endcase does not discard the case selector.

endclass (vocabulary object-size --) strongforth.sf

Store object-size in the virtual method table of the class that is currently being defined. If the
virtual method table does not yet exist, create it in the data-space memory space. Save the
protected vocabulary. If the class has friends, create a new vocabulary for the definitions of the
concatenated private and protected vocabularies, that may be accessed by friends. Restore
vocabulary as the current compilation vocabulary. Remove the private and protected
vocabularies as well as the vocabularies of all friend classes from the context vocabulary list.

endclass ends a class definition.

enddef (code-definition --)

Make code-definition the definition most recently added to the current vocabulary. This is
an extended version of enddef (definition) thattakes care of register usage by code-
definition.

enddef (definition --)

Makes definition the definition most recently added to the current vocabulary.

enddef (local-definition --)

StrongForth 3.1 Glossary: forth 94

Makes local-definition the definition most recently added to the locals vocabulary. This is
an extended version of enddef (definition) thattakes care of register usage by local-
definition.

enddef (value-definition --)

Makes value-definition the definition most recently added to the current vocabulary. This is
an extended version of enddef (definition) thattakes care of register usage by value-
definition.

endof (of-origin endof-origin -- 2nd 1lst) compile-only

Compilation: Resolve the reference given by of-origin. Append the runtime semantics given
below to the current definition. Lock the compiler data type heap. If this is the first occurrence of
endof within a case structure, save the contents of the compiler data type heap. Otherwise,
compare the contents of the compiler data type heap with the one that was saved by the first
endof. An exception is thrown if a difference is detected.

Runtime: Continue execution at the location specified by the consumer of 2nd.

endof-origin (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type endof-
origin.

endunion (object-size object-size object-size -- 1lst)

Terminate a union of members within a class definition. 1 st is the maximum of the second and the
third object-size.

erase (address -> complex unsigned --)

If unsigned is not equal to zero, clear all bits in each of unsigned consecutive complex
floating-point numbers beginning at address -> complex.

erase (address -> double unsigned --)

If unsigned is not equal to zero, clear all bits in each of unsigned consecutive double cells of
memory beginning at address -> double.

erase (address -> float unsigned --)

If unsigned is not equal to zero, clear all bits in each of unsigned consecutive floating-point
numbers beginning at address —-> float.

erase (address -> single unsigned --)

If unsigned is not equal to zero, clear all bits in each of unsigned consecutive cells of memory
beginning at address -> single.

StrongForth 3.1 Glossary: forth 95

strongforth.sf

strongforth.sf

complex.sf

strongforth.sf

float.sf

strongforth.sf

erase (caddress -> single unsigned --)

If unsigned is not equal to zero, clear all bits in each of unsigned consecutive character-size
memory locations beginning at caddress -> single.

erase (dfaddress -> complex unsigned --)

If unsigned is not equal to zero, clear all bits in each of unsigned consecutive complex
double-precision floating-point numbers beginning at dfaddress -> complex.

erase (dfaddress -> float unsigned --)

If unsigned is not equal to zero, clear all bits in each of unsigned consecutive double-
precision floating-point numbers beginning at dfaddress -> float.

erase (object --)

Set all members of object to zero.

erase (sfaddress -> complex unsigned --)

If unsigned is not equal to zero, clear all bits in each of unsigned consecutive complex single-
precision floating-point numbers beginning at sfaddress -> complex.

erase (sfaddress -> float unsigned --)

If unsigned is not equal to zero, clear all bits in each of unsigned consecutive single-precision
floating-point numbers beginning at sfaddress -> float.

error (signed --)

If signed is not equal to zero, send an error message depending on the value of signed to the
default output stream. Then perform the function of quit. If signed is -1, the error message is
empty. If signed is -2, the error message is obtained from 1ine.

error is a deferred definition.

escaped-char (character - 1lst)

Convert character, the second character of a string escape sequence starting with a \
(backslash), into the associated substitition 1 st according to the following translation rules. All
other characters remain unchanged.

Escape sequence | Substitution
\a <bel>

\b <bs>

\e <esc>

\f <ff>

\1 <1f>

\m <1lf>

\n <1lf>

StrongForth 3.1 Glossary: forth 96

strongforth.sf

complex.sf

float.sf

complex.sf

float.sf

escape.sf

\g " (quote)
\r <cr>

\t <ht>

\v <vt>
\xyy (see below)
\z <nul>

\m and \n perform the following additional semantics: Add <cr> to the end of the string
conversion area.

\xyy performs the following semantics: Parse two hexadecimal digits yy and return the resulting
two-digit ASCII code. An exception is thrown if \ x is not followed by two hexadecimal characters.

esi/edi: (stack-diagram -- 1lst)

When used in a stack diagram, specifies the succeeding input or output parameter shall be assigned
to double register esi/edi (if it occupies a double cell) or to either register esi or register edi
(if it occupies a single cell). An exception is thrown if the input or output parameter does not fit
into a single register or a register pair.

esi: (stack-diagram -- 1st)

When used in a stack diagram, specifies the succeeding input or output parameter shall be assigned
to register esi. An exception is thrown if the input or output parameter does not fit into a single
register.

evaluate (caddress -> character unsigned --)

Save the default input stream. Create a new string input stream, initialize it with caddress ->
character unsigned and make it the new default input stream. Set >1in to zero, and
interpret. When the parse area is empty, delete the associated input source and restore the default
input source to its saved value. Other stack effects are due to the words evaluated.

even-parity? (character -- flag)

flagis true if and only if character has even parity.

exception-frame (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type exception-
frame.

exception-frame (unsigned address address exception-frame -- 4 th

)

Initialize exception-frame by erasing all members. Establish a link to the current exception
frame and make exception-frame the current exception frame. Save the default input stream
and the input source specification. Save unsigned as the hardware floating-point stack pointer,
the first address as the instruction pointer and the second address as the stack pointer. Return
exception-frameas4 th.

Once exception-frame is deleted, the previous exception frame is restored.

StrongForth 3.1 Glossary: forth 97

exception-frame is the constructor of the exception-frame class.

execute ((--) --)

Performs the semantics of the definition identified by the qualified execution token (--). The
definition has no input and output parameters.

execute ((--string) - caddress -> character unsigned)

Performs the semantics of the definition identified by the qualified execution token (--string).
caddress -> character and unsigned are the output parameters of the definition.

execute (definition single search-criterion -- flag)

Performs the semantics of the definition identified by the qualified execution token search-
definition.definition, single and £lag are the input and output parameters of the
definition.

execute (unsigned (unsigned--) --)

Performs the semantics of the definition identified by the qualified execution token (unsigned-
-).unsigned is the input parameter of the definition.

execute-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

flagis true if and only if the virtual method table of definition is equal to the virtual
method table of (execute) and the last input parameter of definition is equal to the
qualified token with the data type attributes single.

Note: Provide search-criterion to search in order to find a definition created by
) procreates that executes a qualified token of a given data type.

execute-only (--)

Make the latest definition an execute-only word. The interpreter finds this definition only if in
interpretation state.

exit (--) compile-only

Compilation: Append the runtime semantics given below to the current definition. An exception is
thrown if the contents of the compiler data type heap do not exactly match the output parameters of
the current definition. Lock the compiler data type heap.

Runtime: Remove the stack frame and return to the calling definition.

exp (complex -- 1lst)

StrongForth 3.1 Glossary: forth 98

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

complex.sf

Raise e to the power complex, giving 1st. This operation is based on complex floating-point
numbers.

exp (float -- 1st)

Raise e to the power float, giving 1st.

expml (float -- 1st)

Raise e to the power f1oat and subtract one, giving 1st.

£f>d (float -- signed-double)

signed-double is the numerical equivalent of the integer portion of £1oat. The fractional
portion of £1oat is discarded. An ambiguous condition exists if the integer portion of f1loat
cannot be represented as a double-cell signed integer.

Rounding the floating-point value prior to calling £>s is advised, because £>s always rounds
towards zero.

£f>s (float -- signed)

signed is the numerical equivalent of the integer portion of £1oat. The fractional portion of
float is discarded. An ambiguous condition exists if the integer portion of £ 1oat cannot be
represented as a single-cell signed integer.

Rounding the floating-point value prior to calling £>s is advised, because £>s always rounds
towards zero.

falign (memory-space --) float.sf

If the first unused address of memory-space is not float aligned, reserve the required number of
address units to make it float aligned.

Floating-point numbers are stored in a 10-byte format. Each address that is a multiple of 2 is
assumed to be float aligned.

falign (--) float.sf

If the first unused address of the default memory space is not float aligned, reserve the required
number of address units to make it float aligned.

Floating-point numbers are stored in a 10-byte format. Each address that is a multiple of 2 is
assumed to be float aligned.

faligned (address -- 1lst) float.sf
1st is the lowest float aligned address greater than or equal to address.

Floating-point numbers are stored in a 10-byte format. Each address that is a multiple of 2 is
assumed to be float aligned.

false (-- flag)

StrongForth 3.1 Glossary: forth 99

flagisa false flag, a single-cell item with all bits set to 0.

fam (stack-diagram -- 1st) strongforth.sf

When used in a stack diagram, specifies an input or output parameter with data type fam.

fdepth (-- unsigned) float.sf

unsigned is the number of floating-point numbers on the hardware floating-point stack (0 to 8).

file (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type £ile.

file-input-stream (file unsigned file-input-stream -- 3rd)

Initialize file-input-stream by erasing all members. Make £1ile the input file. Allocate
unsigned characters from dynamic memory as input buffer. 3rdis file-input-stream.

file-input-streamis a constructor of the file-input-stream class.

file-input-stream (file-input-stream 1lst - 1lst)

Copy all members of file-input-streamto 1st.1st is 1st. 1st shares the same input
buffer as file-input-stream. The input buffer will not be deallocated when 1st is deleted.
An ambiguous condition exists if 1st is used after file-input-stream has been deleted.

file-input-streamis a constructor of the file-input-stream class.

file-input-stream (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type file-
input-stream.

file-output-stream (file file-output-stream -- 2nd) strongforth.sf

Initialize file-output-stream by erasing all members. Make f£1i1e the output file. 2nd is
file-output-stream.

file-output-streamis a constructor of the file-output-stream class.

file-output-stream (stack-diagram -- 1lst) strongforth.sf

When used in a stack diagram, specifies an input or output parameter with data type file-
output-stream.

£fill (address -> complex unsigned 2nd --)

If unsigned is not equal to zero, store 2nd in each of unsigned consecutive complex floating-
point numbers, beginning at address -> complex.

StrongForth 3.1 Glossary: forth 100

£fill (address -> double unsigned 2nd --)

If unsigned is not equal to zero, store 2nd in each of unsigned consecutive double cells of
memory, beginning at address -> double.

£fill (address -> float unsigned 2nd --)

If unsigned is not equal to zero, store 2nd in each of unsigned consecutive floating-point
numbers, beginning at address -> float.

fill (address -> single unsigned 2nd --)

If unsigned is not equal to zero, store 2nd in each of unsigned consecutive cells of memory,
beginning at address -> single.

£fill (caddress -> character unsigned 1lst 3rd --)

Copy the character string 1st 3rd to the buffer caddress -> character unsigned.If
3rd is greater than unsigned, the character string is truncated to unsigned characters. If 3rd
is less than unsigned, the buffer is padded with trailing spaces.

£fill (caddress -> single unsigned 2nd --)

If unsigned is not equal to zero, store 2nd in each of unsigned consecutive character-size
memory locations, beginning at caddress -> single.

£fill (dfaddress -> complex unsigned 2nd --)

If unsigned is not equal to zero, store 2nd in each of unsigned consecutive complex double-
precision floating-point numbers, beginning at dfaddress -> complex.

£fill (dfaddress -> float unsigned 2nd --)

If unsigned is not equal to zero, store 2nd in each of unsigned consecutive double-precision
floating-point numbers, beginning at dfaddress -> float.

£fill (sfaddress -> complex unsigned 2nd --)

If unsigned is not equal to zero, store 2nd in each of unsigned consecutive complex single-
precision floating-point numbers, beginning at sfaddress -> complex.

£fill (sfaddress -> float unsigned 2nd --)

If unsigned is not equal to zero, store 2nd in each of unsigned consecutive single-precision
floating-point numbers, beginning at sfaddress -> float.

first (vocabulary -- definition)

definition is the first definition that has been added to vocabulary.

StrongForth 3.1 Glossary: forth 101

float.sf

strongforth.sf

flag (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type f1lag.

float (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type float.

float-definition (caddress -> character unsigned float-definition
-- 4 th)

Initialize float-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update 1atest. Links will be removed when float-
definition is deleted. Assign float-definition a name given by the character string
caddress -> character unsignedandreturnitas 4 th.

float-definition is a constructor of the float-definition class.

float-definition (float-definition -- 1st)

Initialize float-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update 1atest. Links will be removed when float—
definition is deleted.

float-definition is a constructor of the float-definition class.

float-definition (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type f1loat-
definition.

float-1lit (--) immediate

Remove the floating-point literal vocabulary from both the context vocabulary list and the hidden
vocabulary list. Make the floating-point literal vocabulary the head of the context vocabulary list.
An ambiguous condition exists if the floating-point literal vocabulary was not included in one of

the two vocabulary lists before f1oat-11t is executed.

The search virtual method of the floating-point literal vocabulary recognizes and converts
floating-point numbers in the following format, if the number-conversion radix base is (decimal)
10.

convertible string := <significand><exponent>

<significand> = [<sign>]<digits>[.<digits0>]

<exponent> = e[<sign>]<digits0>

<sign> = { + | -}

<digits> = <digit><digits0>

<digitsO0> = <digit>*

<digit> ={ 0| 2121314151161 7138129:}
float-vocabulary (float-vocabulary -- 1lst)

Make float-vocabulary an empty vocabulary and add it as the first item in the hidden
vocabulary list.

StrongForth 3.1 Glossary: forth 102

float.sf

float.sf

float-vocabulary is the constructor of the float-vocabulary class.

float-vocabulary (stack-diagram -- 1lst) float.sf

When used in a stack diagram, specifies an input or output parameter with data type float-
vocabulary.

float: (stack-diagram -- 1lst)

When used in a stack diagram, specifies the succeeding input or output parameter shall be assigned
to the hardware floating-point stack. An exception is thrown if the input or output parameter is not
a floating-point number.

floating-stack (-- unsigned) float.sf

unsigned is the size of the hardware floating-point stack.

floats (integer -- 1lst) float.sf

1st is the size in address units of integer floating-point numbers.

floor (float -- 1st)

Round float to an integral value using the round toward negative infinity rule, giving 1st.

floored (-- flag) strongforth.sf

flagis true if and only if floored division is the default.

flush (--) block.sf

If the block buffer is marked as modified, transfer its contents to the block file. Unassign the block
buffer. An exception is thrown if the block buffer is assigned to an invalid block.

flush (file --) strongforth.sf

Attempt to force any buffered information written to £i1e to be written to mass storage, and the
size information to be recorded in the storage directory if changed. If £i1e was opened in write
mode, the contents of the stream buffer are written to the file or device and the buffer is discarded.
If £11le was opened in read mode, or if the stream has no buffer, £ 1ush has no effect, and any
buffer is retained. An exception is thrown if the operation fails.

fm/mod (signed-double signed -- 2nd signed)

Divide signed-double by signed, giving the floored quotient signed and the remainder
2nd. An exception is thrown if signed is zero. An ambiguous condition exists if the quotient lies
outside the range of a signed single-precision number.

forget ("<spaces>name" --) strongforth.sf

StrongForth 3.1 Glossary: forth 103

Skip leading space delimiters. Parse name delimited by a space. Find name. Delete all definitions
in the current compilation vocabulary starting at the last definition up to and including name.

forget-locals (--)

Delete all definitions in the locals vocabulary.

forth (--) immediate

Remove the forth vocabulary from both the context vocabulary list and the hidden vocabulary
list. Make the forth vocabulary the head of the context vocabulary list. An ambiguous condition
exists if the forth vocabulary was not included in one of the two vocabulary lists before forth
is executed.

forth-vocabulary (-- vocabulary)

vocabulary is the forth vocabulary.

fp! (unsigned --)

Make unsigned the current index of the hardware floating-point stack.

fp@ (-- unsigned)

unsigned is the index of the hardware floating-point stack.

fpe (-- signed)

Checks the exception flags in the hardware floating-point status word. signed is an appropriate
error code for throw:

Exception Floating-point status word signed

IE SF Cl1 DE ZE OE UE PE
Invalid operation 1 0 X X X X X X -55
Stack overflow 1 1 1 X X X X X -44
Stack underflow 1 1 0 X X X X X -45
Denormalized operand | 0 X X 1 X X X X -46
Division by zero 0 X X 0 1 X X X -42
Numeric overflow 0 X X 0 0 1 X X -43
Numeric underflow 0 X X 0 0 0 1 X -54
Inexact result 0 X X 0 0 0 0 1 -41
none 0 X X 0 0 0 0 0 0
free (address --)

Return the contiguous memory space starting at address to the system for later allocation. An
ambiguous condition exists if address does not indicate a memory space that was previously
obtained by allocate, callocate,dfallocate, sfallocate or resize.

StrongForth 3.1 Glossary: forth 104

order.sf

friend-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

flagis true ifand only if definition is associated with the data type of a class whose
protected vocabulary is equal to the value of single.

Note: Provide search-criterion to search in order to find the definition identifying the
class with a given protected vocabulary.

friend? (vocabulary -- data-type flag)

If vocabulary is a protected vocabulary, f1ag is true and data-type is the data type
identifying the class it belongs to. Otherwise, flag is false and data-type is null.

friends((object-size '"<spaces>name;<spaces>name,
<spaces>name,)" -- 1lst)

Create a list of n friend classes of the class currently being defined by repeatedly skipping leading
spaces, parsing name, and adding the class identified by name to the list of friends of the currently
defined class. The list of friend classes is terminated by) .

object-size is a dummy parameter that ensures that friends (is always used within the
body of a class definition. 1st is object-size.

friends (may be used zero or one time within the body of a class definition. An exception is
thrown if friends (is executed more than once within the body of a class definition, or if a name
is parsed that does not identify a class.

fwait (--)

Handle pending floating-point exceptions.

fxam (-- logical)

logical is the content of the floating-point processor's status word, after examining the number
on top of the hardware floating-point stack. Bits 14, 10, 9 and 8 of Logical are set depending on
the number on top of the hardware floating-point stack:

Status Bit 14 Bit10 Bit9 Bit8
Unsupported 0 0] 0
NaN (Not a Number) | 0 0] 1
Valid 0 1] 0
Infinity 0 1] 1
Zero 1 0] 0
Free 1 0 X 1
Denormalized 1 1] 0

x is undefined. s is 0 if the number on top of the hardware floating-point stack is positive, and 1 if it
is negative.

StrongForth 3.1 Glossary: forth 105

strongforth.sf

strongforth.sf

strongforth.sf

get-current (-- vocabulary) order.sf

vocabulary is the current compilation vocabulary.

get-order (-- search-order) order.sf

Allocate memory and store the context vocabulary list and the hidden vocabulary list in it.
search-order is an identifier that enables set-order to restore the context vocabulary list
and the hidden vocabulary list.

here (-- address)

address is the first unused address of the default memory space.

here (memory-space -- address)

address is the first unused address of memory-space.

hex (--) strongforth.sf

Set the number-conversion radix to 16 (hexadecimal).

hidden (-- address -> vocabulary)

address -> vocabulary is the address of a vocabulary that is not searched by search-
context and all words using it. This vocabulary is actually the head of a linked list of
vocabularies not to be searched.

high (double -- single)

single is the most significant cell of double.

hold (caddress -> character unsigned --) strongforth.sf

Prepend unsigned characters starting at caddress -> character to the beginning of the
pictured numeric output string. An ambiguous condition exists if ho1d executes outside of a <#

#> delimited pictured numeric output conversion. An exception is thrown if the transient area
used for storing the pictured numeric output overflows.

hold (character --) strongforth.sf

Prepend character to the beginning of the pictured numeric output string. An ambiguous
condition exists if ho1d executes outside of a <# ... #> delimited pictured numeric output
conversion. An exception is thrown if the transient area used for storing the pictured numeric
output overflows.

hold> (caddress -> character unsigned --) strongforth.sf

Append unsigned characters starting at caddress -> character to the end of the string
conversion area. An ambiguous condition exists if the string converfsion area is used for other

StrongForth 3.1 Glossary: forth 106

purposes before string conversion is done. An exception is thrown if the string conversion area
overflows.

hold> (character --)

Append character to the end of the string conversion area. An ambiguous condition exists if the
string conversion area is used for other purposes before string conversion is done. An exception is
thrown if the string conversion area overflows.

home (--)

Position the cursor of the console window at the upper left corner.

i (-- complex)

complex is the complex floating-point literal with 0e0 as the real part and 1e0 as the imaginary
part.

i* (complex -- 1lst)

Multiply complex by the imaginary unit i, giving 1st.

i*+ (float float -- complex)

Merges two floating-point numbers £1oat into a complex floating-point number complex. The
first one becomes the real part, the second one becomes the imaginary part.

i*+ is the synonym to merge. Its name suggests that the floating-point number on top of the stack
is being multiplied by the imaginary unit i and then added to the number next on the stack.

identity-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

flagis true if and only if the input and output parameters of the stack diagram single are
identical to the input and output parameters of definition.

Note: Provide search-criterion to search in order to find a definition with a given name
and stack diagram.

if (-- origin) compile-only

Compilation: Create a new unresolved forward reference origin and save a copy of the compiler
data type heap. Append the runtime semantics given below to the current definition. The semantics
are incomplete until origin is resolved, e. g., by then or else.

Runtime: (single --)

If single is zero, continue execution at the location specified by the resolution of origin.

StrongForth 3.1 Glossary: forth 107

strongforth.sf

strongforth.sf

complex.sf

complex.sf

strongforth.sf

ignore (--) immediate

If the context vocabulary list is not empty, remove the vocabulary at the head of the context
vocabulary list and prepend it to the hidden vocabulary list.

ignore-all (--)

Remove all vocabularies from the context vocabulary list and prepend them to the hidden
vocabulary list.

ignore-friends (--)

Remove all protected vocabularies from the context vocabulary list and prepend them to the hidden
vocabulary list.

im (complex -- float)

float is the imaginary part of complex.

immediate (--)

Make the latest definition an immediate word.

immediate? (definition -- flag)

flagis trueifand only if definition is an immediate definition or a compile-only
definition.

include ("<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Open the file with the name name
in read-only mode. Position the file pointer to the start of the file. An exception is thrown if the file
does not exist or the operation fails.

Save the default input stream. Create a new file input stream, initialize it with the opened file and
make it the new default input stream. Other stack effects are due to the words included.

Repeat until end of file: Read a line from the file, fill the input buffer from the contents of that line,
set >1in to zero, and interpret. Text interpretation begins at the file position where the next file read
would occur.

When the end of the file is reached, close the file, delete the associated input source and restore the
default input source to its saved value. An exception is thrown if there is an I/O exception reading
the file, or if an I/O exception occurs while closing the file. When an exception is thrown, the status
(open or closed) of any files that were being interpreted is undefined. Create a definition name
with the execution semantics defined below, and make it the latest definition.

Execution: Throw an exception.

include (caddress -> character unsigned --)

Open the file with the name given by the character string caddress -> character
unsigned in read-only mode. Position the file pointer to the start of the file. An exception is
thrown if the file does not exist or the operation fails.

StrongForth 3.1 Glossary: forth 108

order.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

Save the default input stream. Create a new file input stream, initialize it with the opened file and
make it the new default input stream. Other stack effects are due to the words included.

Repeat until end of file: Read a line from the file, fill the input buffer from the contents of that line,
set >1in to zero, and interpret. Text interpretation begins at the file position where the next file read
would occur.

When the end of the file is reached, close the file, delete the associated input source and restore the
default input source to its saved value. An exception is thrown if there is an I/O exception reading
the file, or if an I/O exception occurs while closing the file. When an exception is thrown, the status
(open or closed) of any files that were being interpreted is undefined. Create a definition with the
name specified by the string caddress -> character unsigned and the execution
semantics defined below, and make it the latest definition.

Execution: Throw an exception.

include (file --)

Save the default input stream. Create a new file input stream, initialize it with £i1e and make it
the new default input stream. Other stack effects are due to the words included.

Repeat until end of file: Read a line from the file, fill the input buffer from the contents of that line,
set >1in to zero, and interpret. Text interpretation begins at the file position where the next file read
would occur.

When the end of the file is reached, close the file, delete the associated input source and restore the
default input source to its saved value. An exception is thrown if £i1e is invalid, if there is an I/O
exception reading £1ile, or if an I/O exception occurs while closing £11e. When an exception is
thrown, the status (open or closed) of any files that were being interpreted is undefined.

index (virtual-definition -- unsigned)

unsigned is the index of the virtual method virtual-definition within the virtual method
table.

inline (--)

If the latest definition is a code definition, mark it as an inline code definition, otherwise throw an
exception. An inline code definition will be compiled as a series of inline machine code
instructions instead of a single call, instruction.

inline! (code-definition --)

Marks code-definition as an inline code definition. An inline code definition will be
compiled as a series of inline machine code instructions instead of a single call, instruction.

inline? (code-definition -- flag)

flagis true if and only if code—-definition has been marked as an inline code definition.

input-param, (data-type stack-diagram --)

Append data-type as an additional input parameter to stack-diagram. An exception is
thrown if the internal storage for input and output parameters of stack-diagram is exceeded.

StrongForth 3.1 Glossary: forth 109

strongforth.sf

strongforth.sf

input-params (definition -- address -> data-type unsigned)

address -> data-type is the address of the first input parameter of the stack diagram of
definition. unsigned is the number of basic data types in the input parameter list of the
stack diagram of definition.

input-params (stack-diagram -- address -> data-type unsigned)

address -> data-type is the address of the first input parameter of stack-diagram.
unsigned is the number of basic data types in the input parameter list of stack-diagram.

input-stream (input-stream 1lst - 1st)

Copy all members of input-streamto 1st. 1stis 1st. 1st shares the same input buffer as
input-stream. The input buffer will not be deallocated when 1st is deleted. An ambiguous
condition exists if 1st is used after input-stream has been deleted.

input-streamis a constructor of the input-stream class.

input-stream (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type input-
Stream.

input-stream (unsigned input-stream -- 2nd)

Initialize input-stream by erasing all members. Allocate unsigned characters from dynamic
memory as input buffer. 2nd is input-stream.

input-streamis a constructor of the input-stream class.

integer (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type integer.

integer-double (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type integer-
double.

integer-1it (--) immediate

Remove the integer literal vocabulary from both the context vocabulary list and the hidden
vocabulary list. Prepend the integer literal vocabulary to the context vocabulary list. An ambiguous
condition exists if the integer literal vocabulary was not included in one of the two vocabulary lists
before integer-11it is executed.

The search virtual method of the integer literal vocabulary recognizes and converts integer
numbers in the following format, if the digits are within the allowed range of the number-
conversion radix base.

convertible string := [<prefix>] [<sign>]<digits>[.] | '<char>'

StrongForth 3.1 Glossary: forth 110

<prefix> ={#1 S$1 %}

<sign> = { + | -}

<digits> = <digit><digits0>

<digits0> = <digit>*

<digit> i= { {0-9) | { A3} | {a-=z})

If a prefix is provided, the contents of base is temporarily changed to 10 (#), 16 ($) or 2 (%). A
digit has a value ranging from zero to one less than the contents of base. The digit with the value
zero corresponds to the character 0. This representation of digits proceeds through the character set
to the decimal value nine corresponding to the character 9. For digits beginning with the decimal
value ten the graphic characters beginning with the characters A or a are used. This correspondence
continues up to and including the digit with the decimal value thirty-five which is represented by
the characters Z or z.

Convertible strings with no leading sign and no trailing period are converted into unsigned
numbers. Convertible strings with a leading sign and no trailing period are converted into signed
numbers. Convertible strings with no leading sign and a trailing period are converted into
unsigned-double numbers. Convertible strings with a leading sign and a trailing period are
converted into signed-double numbers.

If the convertible string consists of a graphic character <char> enclosed by single quotes, it is
converted into a character with the ASCII value of the graphic character.

integer-vocabulary (integer-vocabulary -- 1lst)
Make integer-vocabulary an empty vocabulary and prepend to the hidden vocabulary list.

integer-vocabulary is the constructor of the integer-vocabulary class.

integer-vocabulary (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type integer-
vocabulary.

interpret (--)
Interpret the contents of the parse area.

Search and compile or execute each word in the parse area. The search process is done in the
following order:

1. In compilation state, search in the locals vocabulary using search-1local. Ifa local
with the given name is found, compile this local.

2. Search in the context vocabularies using search—-context withmatch-criterion.
If a matching definition is found, compile or execute it depending on state and the
attributes of the definition:

state | attributes semantics
false execute
false immediate execute

false | execute-only | execute
false | compile-only | none

true compile
true immediate execute
true execute-only | none

StrongForth 3.1 Glossary: forth 111

true | compile-only | execute

3. If this is in the locals vocabulary, compile it and search again in the context vocabularies
using search-context withmatch-criterion., then compile the matching
definition.

An exception is thrown if one of the words in the parse area does not match any part of the search
process.

invert (data-type -- 1lst)

1st is data-type with attributes that are the bit-by-bit logical inverse of the attributes of
data-type.

invert (logical -- 1lst)

Invert all bits of 1ogical, giving its logical inverse 1st.

is ("<spaces>name" --) compile-only strongforth.sf

Compilation: Skip leading space delimiters. Parse name delimited by a space. Find a deferred
definition with the name name. An exception is thrown if no deferred definition with the name
name exists. Append the run-time semantics given below to the current definition.

Run-time: (definition --)

Assign the execution semantics of definition to name. An exception is thrown if the stack
diagram of definition does not match the stack diagram of name according to the rules of the
StrongForth data type system.

Deferred definitions are words defined by defer.

is (definition "<spaces>name" --) strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. Find a deferred definition with the
name name. An exception is thrown if no deferred definition with name name exists or if the stack
diagram of definition does not match the stack diagram of name according to the rules of the
StrongForth data type system. Assign the execution semantics of definition to name.

Deferred definitions are words defined by defer.

is (object-size definition "<spaces>name" -- 1lst) strongforth.sf

If the class that is currently being defined does not yet have a virtual method table, create a virtual
method table in the data-space memory space and initialize it with object-size and the
tokens of the parent class plus unassigned tokens for newly added virtual methods. Otherwise,
just update the existing virtual method table with object-size.

Skip leading space delimiters. Parse name delimited by a space. Find a virtual definition with the

name name. An exception is thrown if no virtual definition with name name exists or if the stack
diagram of definition does not match the stack diagram of name according to the rules of the
StrongForth data type system. Assign the execution semantics of definition to name.

Virtual definitions are words defined by virtual.

StrongForth 3.1 Glossary: forth 112

k-alt-mask (-- logical)

logical is a mask for the ALT key, that can be ored with the key value to produce a value that
the sequence ekey ekey>fkey may produce when the user presses the corresponding key

combination.

k-ctrl-mask (-- logical)

logical is a mask for the CTRL key, that can be ored with the key value to produce a value that
the sequence ekey ekey>fkey may produce when the user presses the corresponding key

combination.

k-delete (-- unsigned)

unsigned is the value that the sequence ekey
presses the “delete” key.

k-down (-- unsigned)

unsigned is the value that the sequence ekey
presses the “cursor down” key.

k-end (-- unsigned)

unsigned is the value that the sequence ekey
presses the “end” key.

k-F1 (-- unsigned)

unsigned is the value that the sequence ekey
presses the “F1” key.

k-F10 (-- unsigned)

unsigned is the value that the sequence ekey
presses the “F10” key.

k-F11 (-- unsigned)

unsigned is the value that the sequence ekey
presses the “F11” key.

k-F12 (-- unsigned)

unsigned is the value that the sequence ekey
presses the “F12” key.

k-F2 (-- unsigned)

unsigned is the value that the sequence ekey
presses the “F2” key.

StrongForth 3.1 Glossary: forth

ekey>fkey would produce when the user

ekey>fkey would produce when the user

ekey>fkey would produce when the user

ekey>fkey would produce when the user

ekey>fkey would produce when the user

ekey>fkey would produce when the user

ekey>fkey would produce when the user

ekey>fkey would produce when the user

113

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

k-F3 (-- unsigned)

unsigned is the value that the sequence ekey
presses the “F3” key.

k-F4 (-- unsigned)

unsigned is the value that the sequence ekey
presses the “F4” key.

k-F5 (-- unsigned)

unsigned is the value that the sequence ekey
presses the “F5” key.

k-F6 (-- unsigned)

unsigned is the value that the sequence ekey
presses the “F6” key.

k-F7 (-- unsigned)

unsigned is the value that the sequence ekey
presses the “F7” key.

k-F8 (-- unsigned)

unsigned is the value that the sequence ekey
presses the “F8” key.

k-F9 (-- unsigned)

unsigned is the value that the sequence ekey
presses the “F9” key.

k-home (-- unsigned)

unsigned is the value that the sequence ekey
presses the “home” or “posl” key.

k-insert (-- unsigned)

unsigned is the value that the sequence ekey
presses the “insert” key.

k-left (-- unsigned)

unsigned is the value that the sequence ekey
presses the “cursor left” key.

StrongForth 3.1 Glossary: forth

ekey>fkey would produce when the user

ekey>fkey would produce when the user

ekey>fkey would produce when the user

ekey>fkey would produce when the user

ekey>fkey would produce when the user

ekey>fkey would produce when the user

ekey>fkey would produce when the user

ekey>fkey would produce when the user

ekey>fkey would produce when the user

ekey>fkey would produce when the user

114

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

k-next (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “PgDn” key.

k-prior (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “PgUp” key.

k-reverse-tab (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the shift key and the “tabulator” key.

k-right (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “cursor right” key.

k-shift-mask (-- logical)

logical is a mask for the SHIFT key, that can be ored with the key value to produce a value
that the sequence ekey ekey>fkey may produce when the user presses the corresponding key
combination.

k-up (-- unsigned)

unsigned is the value that the sequence ekey ekey>fkey would produce when the user
presses the “cursor up” key.

key (-- character)

Receive character from the user input device. All standard characters can be received.
Characters received by key are not echoed.

key? (-- flag)

flagis true if and only if a character is available at the user input device. If non-character
keyboard events are available before the first valid character, they are discarded and are
subsequently unavailable. The character will be returned by the next execution of key.

After key? returns with a value of t rue, subsequent executions of key? prior to the execution of
key or ekey also return t rue, without discarding keyboard events.

keyboard-event (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type keyboard-
event.

StrongForth 3.1 Glossary: forth 115

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

label ("<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. name is referred to as a label.

Execution: (—-- address)

address is the value of the code-space memory space pointer at the time name is being
defined.

last (vocabulary -- definition)

definition is the definition most recently added to vocabulary.

last! (definition vocabulary --)

Makes definition the definition most recently added to vocabulary.

latest (-- definition)

definition is the latest compiled definition. Since latest is a value, it can be reassigned
with to.

leave (--) compile-only

Compilation: An exception is thrown if no loop control parameters are available or if the contents
of the compiler data type heap do not exactly match the copy that was saved when the current loop
control parameters were created. Lock the compiler data type heap. Append the runtime semantics
given below to the current definition.

Runtime: Discard the current loop control parameters. An ambiguous condition exists if they are
unavailable. Continue execution immediately following the innermost syntactically enclosing do
loop.

line (-- caddress -> character)

caddress -> character is the address of a transient area used to hold data for intermediate
character string processing. The transient area is /hold characters long.

Note: This transient area is used by the system for storing error messages, for escape string
processing and for pictured numeric output.

link (definition definition --)

Establish a link from the second definition to the first definition without updating
latest.

link-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

StrongForth 3.1 Glossary: forth 116

asm.sf

strongforth.sf

flagis true ifand only if definition is the successor of the definition single within its
vocabulary, i. e., definition is linked to single.

Note: Provide search-criterion to search in order to find the successor of a given
definition.

list (unsigned --) block.sf

Store unsigned in scr. Send block unsigned as 16 lines of text to the default output stream.

lit: (stack-diagram -- 1lst)

When used in a stack diagram, specifies the succeeding input or output parameter shall be assigned
to a literal value. An exception is thrown if the input or output parameter does not fit into a single-
cell or double-cell literal.

literal (complex --) compile-only complex.sf
Compilation: Append the runtime semantics given below to the current definition.

Runtime: Place complex on the stack. complex has the same data type as was supplied at
compilation time.

literal (double --) compile-only strongforth.sf
Compilation: Append the runtime semantics given below to the current definition.

Runtime: Place double on the stack. double has the same data type as was supplied at
compilation time.

literal (float --) compile-only float.sf
Compilation: Append the runtime semantics given below to the current definition.

Runtime: Place f1oat on the stack. f1oat has the same data type as was supplied at compilation
time.

literal (single --) compile-only strongforth.sf
Compilation: Append the runtime semantics given below to the current definition.

Runtime: Place single on the stack. single has the same data type as was supplied at
compilation time.

literal, (complex address -> data-type --)
Append the runtime semantics given below to the current definition.
Runtime: (-- x)

Place complex floating-point literal x on the stack. x has the compound data type stored at
address -> data-type and the value given by complex.

literal, (double address -> data-type --)

StrongForth 3.1 Glossary: forth 117

Append the runtime semantics given below to the current definition.
Runtime: (-- x)

Place double-cell literal x on the stack. x has the compound data type stored at address ->
data-type and the value given by double.

literal, (float address -> data-type --)
Append the runtime semantics given below to the current definition.
Runtime: (-- x)

Place floating-point literal x on the stack. x has the compound data type stored at address ->
data-type and the value given by f1oat.

literal, (single address -> data-type --)
Append the runtime semantics given below to the current definition.
Runtime: (-- x)

Place single-cell literal x on the stack. x has the compound data type stored at address ->
data-type and the value given by single.

1n (complex -- 1lst)

1st is the complex natural logarithm of complex. An ambiguous condition exists if complex is
equal to zero.

ln (float -- 1st)

1st is the natural logarithm of f1oat. An ambiguous condition exists if f1oat is less than or
equal to zero.

lnpl (float -- 1st)

1st is the natural logarithm of the quantity £1oat plus one. An ambiguous condition exists if
float is less than or equal to -1.

load (unsigned --)

Save the default input stream. Create a new block input stream, and make it the new default input
stream. Store unsigned in b1lk. Set >in to zero, and interpret. Once the parse area cannot be
refilled, delete the associated input source and restore the default input source to its saved value.
Other stack effects are due to the words 1oaded. An exception is thrown if unsigned is not a
valid block number.

local (colon-definition "<spaces>name" -- 1lst) compile-only

Compilation: Skip leading space delimiters. Parse name delimited by a space. Create a new local
whose definition name is given by name. Append the runtime semantics given below to the current
definition.

StrongForth 3.1 Glossary: forth 118

complex.sf

block.sf

strongforth.sf

local may be used multiple times within a definition in order to define more than one local.
colon-definition is a dummy parameter that prevents 1ocal to be used within loops, in
conditional clauses, or between >r and r>. 1st is colon-definition.

Runtime: (x —--)

Initialize the local with the value of x. When invoked, the local will return its value. The value of
the local may be changed using to. x can be either a single-cell item, a double-cell item or a real
or complex floating-point number.

local-definition (caddress -> character unsigned local-definition
-- 4 th)

Initialize local-definition by erasing all members. Establish a link to the previous
definition in the locals vocabulary without updating 1atest. Links will be removed when
local-definition is deleted. Assign the value of #1ocals as the locals index to Local-
definition. Assign local-definition aname given by the character string caddress
-> character unsigned andreturnitas 4 th.

local-definition is the constructor of the local-definition class.

local-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type local-
definition.

locals (--) immediate

Remove the 1ocals vocabulary from both the context vocabulary list and the hidden vocabulary
list. Make the 1ocals vocabulary the head of the context vocabulary list. An ambiguous condition
exists if the 1ocals vocabulary was not included in one of the two vocabulary lists before
locals is executed.

locals((colon-definition "<spaces>name;<spaces>name,
<spaces>name,<spaces>)" -- 1lst) compile-only

Compilation: Create local identifiers by repeatedly skipping leading spaces, parsing name, and
executing (local). The list of locals to be defined is terminated by) . An ambiguous condition
exists if the list of locals is not terminated by) . Append the runtime semantics given below to the
current definition.

locals (may be used multiple times within a definition in order to define more than one set of
locals. colon-definition is a dummy parameter that prevents 1ocals (to be used within
loops, in conditional clauses, or between >r and r>. 1st is colon-definition.

Runtime: (x; x, ... X, ——)

Initialize n local identifiers, each of which takes as its initial value one of the values on the stack,
in the given order. The first identifier name; is initialized with x;, identifier name, with x_, etc.
When invoked, each local will return its value. The value of a local may be changed using to. x
can be either a single-cell item, a double-cell item or a real or complex floating-point number.

locals-vocabulary (-- vocabulary)

StrongForth 3.1 Glossary: forth 119

strongforth.sf

strongforth.sf

vocabulary is the locals vocabulary. Note that the locals vocabulary is emptied after a definition
has been compiled.

locals| (colon-definition "<spaces>name;<spaces>name,
<spaces>name,<spaces>)" -- 1lst) compile-only

Compilation: Create local identifiers by repeatedly skipping leading spaces, parsing name, and
executing (local). The list of locals to be defined is terminated by |. An ambiguous condition
exists if the list of locals is not terminated by |. Append the runtime semantics given below to the
current definition.

locals| may be used multiple times within a definition in order to define more than one set of
locals. colon-definition is a dummy parameter that prevents 1ocals | to be used within
loops, in conditional clauses, or between >r and r>. 1st is colon-definition.

Runtime: (x,... x, x; —-—)

Initialize n local identifiers, each of which takes as its initial value the top stack item, removing it
from the stack. The first identifier name; is initialized with x;, identifier name, with x_, etc.
When invoked, each local will return its value. The value of a local may be changed using to. x
can be either a single-cell item, a double-cell item or a real or complex floating-point number.

locase (caddress -> character unsigned --)

Replace each uppercase letter within the character string caddress -> character
unsigned by the equivalent lowercase letter. All other characters remain unchanged. 1ocase
works for German umlauts.

locase (character -- 1lst)

If character is an uppercase letter, 1 st is the equivalent lowercase letter. Otherwise, 1st is
equal to character. locase works for German umlauts.

log (complex -- 1lst)

1st is the complex base-ten logarithm of complex. An ambiguous condition exists if f1oat is
equal to zero.

log (float -- 1st)

1st is the base-ten logarithm of £1o0at. An ambiguous condition exists if £1oat is less than or
equal to zero.

logical (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type logical.

loop (do-destination --) compile-only

Compilation: Append the runtime semantics given below to the current definition. Resolve both the
forward references and the backward reference of do-destination. Delete the loop index 1.
Rename the loop index 7, if it exists, to 1. An exception is thrown if the contents of the compiler

StrongForth 3.1 Glossary: forth 120

strongforth.sf

ascii.sf

ascii.sf

complex.sf

strongforth.sf

data type heap do not exactly match the copy that was saved when do—-destination was
created.

Runtime: An ambiguous condition exists if the loop control parameters are unavailable. Add one to
the loop index. If the loop index is then equal to the loop limit, discard the loop control parameters
and continue execution. Otherwise, branch to the beginning of the loop.

Note: 1oop takes regard of the data type of the loop index.

If the loop index is an address of a single cell, the size of a single cell in address units is added to
the loop index.

If the loop index is an address of a double cell, the size of a double cell in address units is added to
the loop index.

If the loop index is a character address, the size of a character in address units is added to the loop
index.

If the loop index is an address of a floating-point number, the size of a floating-point number in
address units is added to the loop index.

If the loop index is an address of a single-precision floating-point number, the size of a single-
precision floating-point number in address units is added to the loop index.

If the loop index is an address of a double-precision floating-point number, the size of a double-
precision floating-point number in address units is added to the loop index.

If the loop index is an address of a complex floating-point number, the size of a complex floating-
point number in address units is added to the loop index.

If the loop index is an address of a complex single-precision floating-point number, the size of a
complex single-precision floating-point number in address units is added to the loop index.

If the loop index is an address of a complex double-precision floating-point number, the size of a
complex double-precision floating-point number in address units is added to the loop index.

low (double -- single)

single is the least significant cell of double.

lrotate (logical -- 1st)

Perform a logical left rotation of one bit-place on logical, giving 1st.

lrotate (logical unsigned -- 1lst)

Perform a logical left rotation of unsigned bit-places on 1ogical, giving 1st.

1lshift (logical -- 1st)

Perform a logical left shift of one bit-place on Logical, giving 1st. Put zero into the least
significant bit vacated by the shift.

1shift (logical unsigned -- 1lst)

Perform a logical left shift of unsigned bit-places on 1ogical, giving 1st. Put zeros into the
least significant bits vacated by the shift.

StrongForth 3.1 Glossary: forth 121

m* (signed signed -- signed-double)

signed-double is the double-cell product of the first signed and the second signed. All
numbers and arithmetic are signed.

m* (unsigned unsigned -- unsigned-double)

unsigned-double is the double-cell product of the first unsigned and the second
unsigned. All numbers and arithmetic are unsigned.

m/ (signed-double signed -- signed)

Divide signed-double by signed, giving the symmetric quotient signed. An exception is
thrown if signed is zero. An ambiguous condition exists if the quotient lies outside the range of a
signed single-precision number. If both operands differ in sign, the result returned will be the same
as that returned by the phrase sm/rem nip.

m/ (unsigned-double unsigned -- unsigned)

Divide unsigned-double by unsigned, giving the quotient unsigned. An exception is
thrown if unsigned is zero. An ambiguous condition exists if the quotient lies outside the range
of an unsigned single-precision number.

m/mod (signed-double signed -- 2nd signed)

Divide signed-double by signed, giving the symmetric quotient signed and the remainder
2nd. An exception is thrown if signed is zero. An ambiguous condition exists if the quotient lies
outside the range of a signed single-precision number. If both operands differ in sign, the result
returned will be the same as that returned by sm/rem.

m/mod (unsigned-double unsigned -- 2nd unsigned)

Divide unsigned-double by unsigned, giving the quotient unsigned and the remainder
2nd. An exception is thrown if unsigned is zero. An ambiguous condition exists if the quotient
lies outside the range of an unsigned single-precision number.

marker ("<spaces>name" --) strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below.

name Execution: Restore pointers of the data, code and stack memory spaces and the vocabulary
structure as well as default-memory-space and latest as they were just prior to the
definition of name. Remove the definition of name and all subsequent definitions. Restoration of
any structures still existing that could refer to deleted definitions or refer to allocated memory

spaces is not necessarily provided. No other contextual information such as the numeric base is
affected.

marker-class (marker-class -- 1lst) strongforth.sf

StrongForth 3.1 Glossary: forth 122

Initialize marker-class by storing the pointers of the data, code and stack memory spaces and the
vocabulary structure as well as default-memory-space and latest as they were prior to
the creation of marker-class.

marker-class is the constructor of the marker-class class.

marker-class (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type marker—
class.

match (control-flow --)

If the compiler data type heap was locked when control-f1low was initialized, do nothing.
Otherwise perform the semantics given below.

If the compiler data type heap is locked, restore the compiler data type heap to the state that was
saved when control-f1low was initialized. If the compiler data-type heap is not locked,
compare the compiler data type heap with the one that was saved when control-flow was
initialized. An exception is thrown if they do not exactly match.

match-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

flag is true if and only if the selected data type heap matches the input parameter list of
definition. The matching algorithm follows the rules of the StrongForth data type system.

The selected data type heap depends on state, the attributes of definition and the value of
single:

single| state | attributes data type heap
false | false interpreter
false | false | immediate interpreter

false | false | execute-only | interpreter
false | false | compile-only | (no match)
false | true compiler

false | true immediate interpreter
false | true execute-only (no match)
false | true compile-only | interpreter

true false interpreter
true false | immediate interpreter
true false | execute-only | interpreter
true false | compile-only | (no match)
true true compiler
true true immediate compiler
true true execute-only (no match)
true true compile-only compiler

Note: Provide search-criterion to search in order to find a definition with matching input

parameters according to the rules of the StrongForth data type system.

StrongForth 3.1 Glossary: forth 123

strongforth.sf

match? (address -> data-type unsigned compiler-workspace -- flag

)

flag is true if and only if the data type heap saved in compiler-workspace matches the list
of unsigned basic data types starting at address -> data-type. The matching algorithm
follows the rules of the StrongForth data type system. The list of basic data types may contain
compound data types and data type references.

max (address 1lst -- 1lst)

1st is the unsigned maximum of address and 1st.

max (float 1st -- 1lst)

1st is the maximum of float and 1st.

max (integer 1lst -- 1st)

1st is the unsigned maximum of integer and 1st.

max (integer-double 1lst -- 1st)

1st is the unsigned maximum of integer-double and 1st.

max (signed 1lst -- 1st)

1st is the signed maximum of signed and 1st.

max (signed-double 1lst -- 1lst)

1st is the signed maximum of signed-double and 1st.

max-character (-- unsigned) strongforth.sf

unsigned is the maximum value a character can assume.

max-float (-- float) float.sf

float is the largest usable floating-point number.

max-precision (-- unsigned) float.sf

unsigned is the maximum value precision can assume.

max-signed (-- signed) strongforth.sf

signed is the maximum value a signed single-precision number can assume.

max-signed-double (-- signed-double) strongforth.sf

StrongForth 3.1 Glossary: forth 124

signed-double is the maximum value a signed double-precision number can assume.

max-unsigned (-- unsigned) strongforth.sf

unsigned is the maximum value an unsigned single-precision number can assume.

max-unsigned-double (-- unsigned-double) strongforth.sf

unsigned-double is the maximum value an unsigned double-precision number can assume.

member (object-size complex '"<spaces>name" -- 1lst) complex.sf

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to cell size, plus the size in bits of a complex floating-point number.

name is referred to as a class member. member reserves space for two floating-point numbers for
a class member of the same data type as complex in the class that is currently being defined.

Execution: (x -- address -> y)

address -> yis the address of the class member of the object x, that was reserved at the time
name was created. y is the actual data type that was provided to member as complex.

member (object-size double "<spaces>name" -- 1lst) strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to cell size, plus the number of bits in two cells.

name is referred to as a class member. member reserves two cells for a class member of the same
data type as double in the class that is currently being defined.

Execution: (x —-- address -> y)

address -> yis the address of the class member of the object x, that was reserved at the time
name was created. y is the actual data type that was provided to member as double.

member (object-size float '"<spaces>name" -- 1lst) float.sf

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to floating-point numbers, plus the size in bits of a floating-point number.

name is referred to as a class member. member reserves space for one floating-point number for a
class member of the same data type as £1oat in the class that is currently being defined.

Execution: (x —-- address -> y)

address -> yis the address of the class member of the object x, that was reserved at the time
name was created. y is the actual data type that was provided to member as float.

member (object-size single "<spaces>name" -- 1lst) strongforth.sf

StrongForth 3.1 Glossary: forth 125

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to cell size, plus the number of bits in one cell.

name 1s referred to as a class member. member reserves one cell for a class member of the same
data type as single in the class that is currently being defined.

Execution: (x -- address -> y)

address -> yis the address of the class member of the object x, that was reserved at the time
name was created. y is the actual data type that was provided to member as single.

member-definition (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type member—
definition.

member-definition (unsigned caddress -> character unsigned
member-definition -- 5 th)

Initialize member-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update 1atest. Links will be removed when member—
definition is deleted. The first unsigned is the position of the new member in bits with
respect to the start address of the object. Assign member-definition aname given by the
character string caddress -> character unsignedandreturnitas 5 th.

member-definition is the constructor of the member-definition class.

members (object-size complex unsigned "<spaces>name" -- 1lst)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to cell size, plus unsigned times the size in bits of a complex floating-
point number.

name is referred to as a class member. members reserves unsigned complex floating-point
numbers for an array of unsigned class members of the same data type as complex in the class
that is currently being defined.

Execution: (x -- address -> y)

address -> yisthe address of an array of unsigned class members of the object x, that
were reserved at the time name was created. v is the actual data type that was provided to member
as complex.

members (object-size double unsigned "<spaces>name" -- 1lst)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to cell size, plus unsigned times the number of bits in two cells.

name is referred to as a class member. members reserves unsigned double cells for an array of

unsigned class members of the same data type as double in the class that is currently being
defined.

Execution: (x -- address -> y)

StrongForth 3.1 Glossary: forth 126

complex.sf

strongforth.sf

address -> yisthe address of an array of unsigned class members of the object x, that
were reserved at the time name was created. v is the actual data type that was provided to member
as double.

members (object-size float unsigned "<spaces>name" -- 1lst)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to floating-point numbers, plus unsigned times the size in bits of a
floating-point number.

name is referred to as a class member. members reserves unsigned floating-point numbers for
an array of unsigned class members of the same data type as £1oat in the class that is currently
being defined.

Execution: (x -- address -> y)

address -> yisthe address of an array of unsigned class members of the object x, that
were reserved at the time name was created. v is the actual data type that was provided to member
as float.

members (object-size single unsigned "<spaces>name" -- 1lst)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to cell size, plus unsigned times the number of bits in one cell.

name is referred to as a class member. members reserves unsigned cells for an array of

unsigned class members of the same data type as single in the class that is currently being
defined.

Execution: (x -- address -> y)

address -> yisthe address of an array of unsigned class members of the object x, that
were reserved at the time name was created. v is the actual data type that was provided to member
as single.

memory-space (address unsigned memory-space -- 3rd)

Initialize memory-space by assigning address as its bottom and unsigned as its size in
address units. The memory space consists of unsigned unused address units.

memory-space is a constructor of the memory-space class.

memory-space (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type memory—
space.

memory-space (unsigned memory-space -- 2nd)

Allocate unsigned address units of dynamic memory. Initialize memory-space by assigning it
the address of the allocated memory as its bottom and unsigned as its size. The memory space
consists of unsigned unused address units.

StrongForth 3.1 Glossary: forth 127

float.sf

strongforth.sf

memory-space is a constructor of the memory-space class.

merge (float float -- complex)

Merges two floating-point numbers £1oat into a complex floating-point number complex. The
first one becomes the real part, the second one becomes the imaginary part.

merge (single single -- double)

Merges two single-cell items single into a double-cell item double. The most significant part
is expected on top of the stack.

min (address lst -- 1lst)

1st is the unsigned minimum of address and 1st.

min (float 1st -- 1lst)

1st is the minimum of float and 1st.

min (integer 1lst -- 1st)

1st is the unsigned minimum of integer and 1st.

min (integer-double 1lst -- 1st)

1st is the unsigned minimum of integer-double and 1st.

min (signed 1lst -- 1lst)

1st is the signed minimum of signedand 1st.

min (signed-double 1lst -- 1lst)

1st is the signed minimum of signed-double and 1st.

mod (signed signed -- 2nd)

Divide the first signed by the second signed, giving the remainder 2nd. An exception is
thrown if the second signed is zero. If the first signed and the second signed differ in sign,
the result returned will be the same as that returned by the phrase swap s>d swap sm/rem
drop.

mod (signed-double signed -- 2nd)

Divide signed-double by signed, giving the remainder 2nd. An exception is thrown if
signed is zero. If signed-double and signed differ in sign, the result returned will be the
same as that returned by the phrase sm/rem drop.

StrongForth 3.1 Glossary: forth 128

strongforth.sf

mod (unsigned unsigned -- 2nd)

Divide the first unsigned by the second unsigned, giving the remainder 2nd. An exception is
thrown if the second unsigned is zero.

mod (unsigned-double unsigned -- 2nd)

Divide unsigned-double by unsigned, giving the single-precision remainder 2nd. An
exception is thrown if unsigned is zero.

move (address -> complex lst unsigned --)

If unsigned is not equal to zero, copy the contents of unsigned consecutive complex floating-
point numbers starting at address -> complex to address 1st. After move completes, the
unsigned consecutive complex floating-point numbers starting at address 1st contain exactly
what the unsigned consecutive complex floating-point numbers starting at address ->
complex contained before.

Note: The source memory will be partly overwritten if the memory areas overlap.

move (address -> double 1lst unsigned --)

If unsigned is not equal to zero, copy the contents of unsigned consecutive double cells
starting at address —> double to the unsigned consecutive double cells starting at address
1st. After move completes, the unsigned consecutive double cells starting at address 1st
contain exactly what the unsigned consecutive double cells starting at address —-> double
contained before.

Note: The source memory will be partly overwritten if the memory areas overlap.

move (address -> float 1lst unsigned --)

If unsigned is not equal to zero, copy unsigned consecutive floating-point numbers starting at
address -> float to address 1st. After move completes, the unsigned consecutive
floating-point numbers starting at address 1st are identical to the unsigned consecutive
floating-point numbers starting at address -> float before.

Note: The source memory will be partly overwritten if the memory areas overlap.

move (address -> single 1lst unsigned --)

If unsigned is not equal to zero, copy the contents of unsigned consecutive cells starting at
address -> single to the unsigned consecutive cells starting at address 1st. After move
completes, the unsigned consecutive cells starting at address 1st contain exactly what the
unsigned consecutive cells starting at address -> single contained before.

Note: The source memory will be partly overwritten if the memory areas overlap.

move (caddress 1lst unsigned --)

If unsigned is not equal to zero, copy the contents of unsigned consecutive character-size
items starting at caddress to the unsigned consecutive character-size items starting at address
1st. After move completes, the unsigned consecutive character-size items starting at address

StrongForth 3.1 Glossary: forth 129

1st contain exactly what the unsigned consecutive character-size items starting at caddress
contained before.

Note: The source memory will be partly overwritten if the memory areas overlap.

move (dfaddress -> complex lst unsigned --)

If unsigned is not equal to zero, copy unsigned consecutive complex double-precision
floating-point numbers starting at dfaddress -> complex to address 1st. After move
completes, the unsigned consecutive complex double-precision floating-point numbers starting
at address 1st are identical to the unsigned consecutive complex double-precision floating-
point numbers starting at dfaddress -> complex before.

Note: The source memory will be partly overwritten if the memory areas overlap.

move (dfaddress 1lst unsigned --)

If unsigned is not equal to zero, copy unsigned consecutive double-precision floating-point
numbers starting at dfaddress to address 1st. After move completes, the unsigned
consecutive double-precision floating-point numbers starting at address 1 st are identical to the
unsigned consecutive double-precision floating-point numbers starting at dfaddress before.

Note: The source memory will be partly overwritten if the memory areas overlap.

move (sfaddress -> complex lst unsigned --)

If unsigned is not equal to zero, copy unsigned consecutive complex single-precision
floating-point numbers starting at sfaddress -> complex to address 1st. After move
completes, the unsigned consecutive complex single-precision floating-point numbers starting at
address 1st are identical to the unsigned consecutive complex single-precision floating-point
numbers starting at sfaddress -> complex before.

Note: The source memory will be partly overwritten if the memory areas overlap.

move (sfaddress 1lst unsigned --)

If unsigned is not equal to zero, copy unsigned consecutive single-precision floating-point
numbers starting at sfaddress to address 1st. After move completes, the unsigned
consecutive single-precision floating-point numbers starting at address 1 st are identical to the
unsigned consecutive single-precision floating-point numbers starting at sfaddress before.

Note: The source memory will be partly overwritten if the memory areas overlap.

ms (unsigned --)

Wait at least unsigned milliseconds.

msvert (--) immediate

Remove the msvcrt vocabulary from both the context vocabulary list and the hidden vocabulary
list. Make the msvcrt vocabulary the head of the context vocabulary list. An ambiguous condition
exists if the msvcrt vocabulary was not included in one of the two vocabulary lists before
msvcrt is executed.

StrongForth 3.1 Glossary: forth 130

strongforth.sf

name (definition -- caddress -> character unsigned)

caddress -> character unsigned is a character string representing the name of
definition. caddress -> character is anull address and unsigned is zero if
definition has no name.

negate (complex -- 1lst)

Negate complex, giving its arithmetic inverse 1st.

negate (float -- 1st)

Negate f1loat, giving its arithmetic inverse 1st.

negate (integer -- 1lst)

Negate integer, giving its arithmetic inverse 1st. integer is assumed to be a signed numeric
value.

negate (integer-double -- 1st)

Negate integer-double, giving its arithmetic inverse 1st. integer—double is assumed to
be a signed numeric value.

new ("<spaces>name" --) compile-only

Compilation: Skip leading space delimiters. Parse name delimited by a space. Append the runtime
semantics given below to the current definition.

Runtime: Execute (new) in order to create an object with data type name. Initialize the new
object by compiling name.

new ("<spaces>name" --) execute-only

Interpretation: Skip leading space delimiters. Parse name delimited by a space. Evaluate (new) in
order to create an object with data type name. Initialize the new object by interpreting name.

new-included-file (caddress -> character unsigned --)

Create a definition with the name specified by the string caddress -> character
unsigned and the execution semantics defined below, and make it the latest definition. The
definition is a marker for an included source file. It is not supposed to be executed.

Execution: Throw an exception.

next (vocabulary -- vocabulary)

vocabulary (output parameter) is the vocabulary succeeding vocabulary (input parameter)
in the vocabulary list it belongs to, or null if vocabulary (input parameter) is the last vocabulary
of the list.

StrongForth 3.1 Glossary: forth 131

complex.sf

strongforth.sf

strongforth.sf

strongforth.sf

next! (vocabulary vocabulary --)

Make the first vocabulary succeed the second vocabulary in the vocabulary list the second

one belongs to.

nip (complex complex -- 2nd)

Remove the first item below the top of the stack.

nip (complex double -- 2nd)

Remove the first item below the top of the stack.

nip (complex float -- 2nd)

Remove the first item below the top of the stack.

nip (complex single -- 2nd)

Remove the first item below the top of the stack.

nip (double complex -- 2nd)

Remove the first item below the top of the stack.

nip (double double -- 2nd)

Remove the first item below the top of the stack.

nip (double float -- 2nd)

Remove the first item below the top of the stack.

nip (double single -- 2nd)

Remove the first item below the top of the stack.

nip (float complex -- 2nd)

Remove the first item below the top of the stack.

nip (float double -- 2nd)

Remove the first item below the top of the stack.

nip (float float -- 2nd)

Remove the first item below the top of the stack.

StrongForth 3.1 Glossary: forth

132

nip (float single -- 2nd)

Remove the first item below the top of the stack.

nip (single complex -- 2nd)

Remove the first item below the top of the stack.

nip (single double -- 2nd)

Remove the first item below the top of the stack.

nip (single float -- 2nd)

Remove the first item below the top of the stack.

nip (single single -- 2nd)

Remove the first item below the top of the stack.

no-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)
Drop definition and single. flagis true.

Note: Provide search-criterion to search if no additional search criterion shall be applied.

nodelete (object --)

Throws an exception, indicating that object can or may not be deleted.

noop (--)
Interpretation: No operation.

Compilation: No operation.

not-decimal? (-- flag) float.sf

flagis true if and only if the value of the number-conversion radix base is not (decimal) 10.

null ("<spaces>name" --) immediate strongforth.sf
Interpretation: (-- y)

Skip leading space delimiters. Parse name delimited by a space. Return y, which has the numerical
value 0 (all bits are zero) and the data type identified by name. y can be a single-cell or double-cell
item or a real or complex floating-point number. An exception is thrown if name is not the name of
a data type.

StrongForth 3.1 Glossary: forth 133

Compilation: (--)

Skip leading space delimiters. Parse name delimited by a space. Append the runtime semantics
given below to the current definition. An exception is thrown if name is not the name of a data
type.

Runtime: (-- y)

Return y, which has the numerical value 0 (all bits are zero) and the data type identified by name.
y can be a single-cell or double-cell item or a real or complex floating-point number.

number-double (stack-diagram -- 1lst) strongforth.sf

When used in a stack diagram, specifies an input or output parameter with data type number-
double.

object (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type object.

object-size (stack-diagram -- 1lst) strongforth.sf

When used in a stack diagram, specifies an input or output parameter with data type object-
size.

object? (data-type -- flag) strongforth.sf

flagis trueifand only data-type is equal to object, or if data-type is directly or
indirectly derived from object.

octal (--)

Set the number-conversion radix to 8 (octal).

odd-parity? (character -- flag)

flagis true if and only if character has odd parity.

of (endof-origin of-origin -- 2nd 1lst) compile-only strongforth.sf

Compilation: Append the runtime semantics given below to the current definition. Check if the
contents of the compiler data type heap exactly matches the one that was saved when of-origin
was created. An exception is thrown if a difference is detected. 2nd is endof-origin. The
semantics are incomplete until resolved by a consumer of 2nd, such as endcase, and 1st, such as
endof.

Runtime: (single 1st --) | (single 1lst -- 1st)

If single and 1st are equal, discard both items and continue execution. Otherwise, discard 1st
and continue execution at the location specified by the consumer of 2nd and 1st.

of-origin (stack-diagram -- 1lst)

StrongForth 3.1 Glossary: forth 134

When used in a stack diagram, specifies an input or output parameter with data type of-origin.

offset (data-type -- unsigned)

If data-type has the reference attribute, unsigned is the index of the basic data type it refers
to, starting with 1. Otherwise, unsigned is 0.

only (--)

Remove all vocabularies from the context vocabulary list and add them to the hidden vocabulary
list. Add the forth vocabulary to the context vocabulary list and remove it from the hidden
vocabulary list.

open (caddress -> character unsigned fam -- file)

Open the file with the name given by the character string caddress -> character
unsigned as £ile with file access method fam. Position the file pointer to the start of the file.
An exception is thrown if the file does not exist or the operation fails.

Note: If the file is opened with “write only” file access method, its contents will be destroyed.

or (data-type data-type -- 1lst)

1st is the first data-type with attributes that are the bit-by-bit logical or of the attributes of
both parameters data-type.

or (single logical -- 1st)

1st is the bit-by-bit inclusive-or of single with logical.

order (--)

Send the names of the current compilation vocabulary and the names of all vocabularies in the
context vocabulary list to the default output stream. If a vocabulary is the protected vocabulary of a
class, send the class name instead of the vocabulary name to the default output stream.

origin (origin -- 1st)

Initialize origin by erasing all members. If the compiler data type heap is not locked, save a
copy of the present compiler data type heap. Save the value of the code-space memory space
pointer as the code origin.

origin is the constructor of the origin class.

origin (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type origin.

output-params (definition -- address -> data-type unsigned)

StrongForth 3.1 Glossary: forth 135

order.sf

strongforth.sf

strongforth.sf

address -> data-type is the address of the first output parameter of the stack diagram of
definition. unsigned is the number of basic data types in the output parameter list of the
stack diagram of definition.

output-params (stack-diagram -- address -> data-type unsigned)

address -> data-type is the address of the first output parameter of stack-diagram.
unsigned is the number of basic data types in the output parameter list of stack-diagram.

output-stream (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type output-
stream.

over (complex complex -- 1lst 2nd 1st)

Place a copy of the first complex on top of the stack.

over (complex double -- 1lst 2nd 1lst)

Place a copy of complex on top of the stack.

over (complex float -- 1lst 2nd 1st)

Place a copy of complex on top of the stack.

over (complex single -- 1lst 2nd 1st)

Place a copy of complex on top of the stack.

over (double complex -- 1lst 2nd 1st)

Place a copy of double on top of the stack.

over (double double -- 1lst 2nd 1lst)

Place a copy of the first double on top of the stack.

over (double float -- 1lst 2nd 1st)

Place a copy of double on top of the stack.

over (double single -- 1lst 2nd 1lst)
Place a copy of double on top of the stack.

over (float complex -- 1lst 2nd 1st)
Place a copy of f1oat on top of the stack.

StrongForth 3.1 Glossary: forth 136

over (float double -- 1lst 2nd 1st)

Place a copy of £1oat on top of the stack.

over (float float -- 1lst 2nd 1lst)

Place a copy of the first £1oat on top of the stack.

over (float single -- 1lst 2nd 1st)

Place a copy of f1oat on top of the stack.

over (single complex -- 1lst 2nd 1lst)

Place a copy of single on top of the stack.

over (single double -- 1st 2nd 1st)

Place a copy of single on top of the stack.

over (single float -- 1st 2nd 1st)

Place a copy of single on top of the stack.

over (single single -- 1st 2nd 1st)

Place a copy of the first single on top of the stack.

overflow? (-- flag)

flagis true if and only if the directly preceding operation caused the processor’s overflow flag
to be set.

pack (single single single single -- single)
Packs the least significant bytes of four items with data type single into one cell single.

The least significant byte of the first single becomes the most significant byte of single. The
least significant byte of the second single becomes the second most significant byte of single.
The least significant byte of the third single becomes the second least significant byte of
single. The least significant byte of the fourth single becomes the least significant byte of
single.

pad (-- caddress -> character)

caddress -> character is the address of a scratch area that can be used to hold data for
intermediate character string processing. The scratch area is /pad characters long.

Note: This scratch area is reserved for applications. It will not be used by the system.

StrongForth 3.1 Glossary: forth 137

strongforth.sf

page (--) strongforth.sf

Clear the console window by writing 25 lines of 80 space characters each and positioning the
cursor at the upper left corner of the screen.

param, (data-type stack-diagram --)

Append data-type as an input or output parameter to stack—-diagram. An exception is
thrown if the internal storage for input and output parameters of stack-diagram is exceeded.

params! (address -> data-type definition --)

Assign a stack diagram to definition. The stack diagram has no input parameters and one
output parameter, which is stored as a compound data type at address -> data-type.

params! (code-definition created-definition --) strongforth.sf

Assign a stack diagram to created-definition, using the input and output parameters of
code-definition. The last input parameter of code-definition is excluded.

params! (data-type address -> data-type definition --) strongforth.sf

Assign a stack diagram to definition. The stack diagram has no input parameters and one
output parameter. The output parameter is a compound data type which is composed of data-
type as the head and the compound data type at address -> data-type as the tail.

params! (data-type address -> data-type member-definition --) strongforth.sf

Assign a stack diagram to member-definition. The stack diagram has one input parameter
and one output parameter. The input parameter has the data type of the class that is currently being
defined. The output parameter is a compound data type which is composed of data-type as the
head and the compound data type at address -> data-type as the tail.

params! (data-type member-definition --) struct.sf

Assign a stack diagram to member-definition. The stack diagram has one input parameter
and one output parameter. The input parameter has the data type of the class that is currently being
defined. The output parameter is data-type.

params! (stack-diagram definition --)

Throws an exception if stack-diagram is incomplete. Assign stack—-diagram to
definition. Delete stack-diagram.

params, (address -> data-type stack-diagram --) strongforth.sf

Append a compound data type stored at address -> data-type as an input or output
parameter to stack-diagram. Data type attributes are removed, except for the reference and the
prefix attributes. An exception is thrown if the internal storage for input and output parameters of
stack-diagram is exceeded.

StrongForth 3.1 Glossary: forth 138

params, (address -> data-type unsigned stack-diagram --)

Append unsigned basic data types stored at address -> data-type as input or output
parameters to stack-diagram. Data type attributes are removed, except for the reference and
the prefix attributes. An exception is thrown if the internal storage for input and output parameters
of stack-diagram is exceeded.

params, (definition stack-diagram --)

Append the input parameters of definition as input parameters to stack-diagram. Append
the output parameters of definition as output parameters to stack-diagram. Data type
attributes are removed, except for the reference and the prefix attributes. An exception is thrown if
the internal storage for input and output parameters of stack-diagram is exceeded.

params-alias, (address -> data-type unsigned stack-diagram --)

Append unsigned basic data types stored at address -> data-type as input or output
parameters to stack-diagram. An exception is thrown if the internal storage for input and
output parameters of stack-diagram is exceeded.

params-alias, (definition stack-diagram --)

Append the input parameters of definition as input parameters to stack-diagram. Append
the output parameters of definition as output parameters to stack-diagram. An exception
is thrown if the internal storage for input and output parameters of stack-diagram is exceeded.

params-stripped, (definition stack-diagram --)

Append the input parameters of definition, except for the last input parameter, as input
parameters to stack—-diagram. Append the output parameters of definition as output
parameters to stack-diagram. An exception is thrown if the internal storage for input and
output parameters of stack-diagram is exceeded.

params-virtual, (definition stack-diagram --)

Append the input parameters of definition as input parameters to stack-diagram,
replacing the last input parameter with the data type of the class that is currently being defined.
Append the output parameters of definition as output parameters to stack-diagram. An
exception is thrown if the internal storage for input and output parameters of stack-diagramis
exceeded.

params>dt (definition --)

Append the input parameters of definition to the data type heap selected by state, starting
with the first input parameter. Data type references within the input parameter list are being
resolved by recursively appending the referenced data types onto the data type heap. An exception
is thrown if the data type heap overflows.

parent (data-type -- 1lst)

StrongForth 3.1 Glossary: forth 139

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

1st is the parent data type of data-type without any attributes set. If data-type does not
have a parent data type, 1st is null.

parent-attributes (-- class-attributes)

class-attributes is the attributes of the parent of the data type of the class that is currently
being defined.

parent-vtable (-- vtable)

vtable is the virtual method table of the parent of the class that is currently being defined.

parse (character "ccc<delimiter>" -- caddress -> character
unsigned)

Parse ccc delimited by character.

caddress -> character is the address within the input buffer and unsigned is the length
of the parsed string. If the parse area was empty, unsigned is zero.

parse-deferred-definition ("<spaces>name" -- deferred-definition

)

Skip leading space delimiters. Parse name delimited by a space. Find a deferred definition with the
name name and return it as deferred-definition. If no such deferred definition exists,
throw an exception and return null as deferred-definition.

Deferred definitions are words defined by defer.

parse-name ("<spaces>name" -- caddress -> character unsigned)
Skip leading space delimiters. Parse name delimited by a space.

caddress -> character is the address within the input buffer and unsigned is the length
of name. If the parse area was empty, unsigned is zero.

Delimiters are the space character and any character with an ASCII value less than that of a space
character.

period (--)

Send a period (.) to the default output stream.

pPi (-- float)
float isw(3.14159265358979323846).

picture (double -- caddress -> character unsigned)

caddress -> character unsigned is the picture of double as an unsigned double-
precision number in free field format.

StrongForth 3.1 Glossary: forth 140

strongforth.sf

strongforth.sf

strongforth.sf

float.sf

strongforth.sf

picture (signed-double -- caddress -> character unsigned) strongforth.sf

caddress -> character unsigned is the picture of signed-double as a signed
double-precision number in free field format.

position (file -- unsigned-double) strongforth.sf

unsigned-double is the current file position for the file identified by £ile. An exception is
thrown if the operation fails.

position-block (unsigned --) block.sf

Position the file pointer of the block file to the first character of the block with the number
unsigned.

postpone ("<spaces>name" --) compile-only strongforth.sf

Compilation: Skip leading space delimiters. Parse name delimited by a space. Find name. Append
the compilation semantics of name to the current definition. An exception is thrown if name is not
found.

precision (-- unsigned) float.sf

unsigned is the number of significant digits currently used by ., e., or s.. Since precision
is a value, it can be reassigned with to.

prefix? (data-type -- flag) strongforth.sf

flagis true if and only if data-type has the dt-prefix attribute.

prev (definition -- definition)

The second definition is the predecessor of the first definition in the same vocabulary, or
null if the first definition has no predecessor.

prev (exception-frame -- exception-frame)

The second exception-frame is the next higher level exception frame of the first
exception-frame, or null if the first exception-frame is at the highest level.

private (--) immediate

Remove the private vocabulary from both the context vocabulary list and the hidden vocabulary
list. Make the private vocabulary the head of the context vocabulary list. An ambiguous
condition exists if the private vocabulary was not included in one of the two vocabulary lists
before private is executed.

private-vocabulary (-- vocabulary) strongforth.sf

StrongForth 3.1 Glossary: forth 141

vocabulary is the private vocabulary. Note that the private vocabulary is not available outside
the scope of a class definition.

procreates (data-type "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. The definition identifies a new data type that is a direct
subtype of data—-type and has the same size. An ambiguous condition exists if procreates is
executed in compilation state or if data-type is not a valid data type.

Execution: (stack-diagram —-- 1st)

When used in a stack diagram, specifies an input or output parameter with the new data type.

procreates (data-type unsigned "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. The definition identifies a new data type that is a direct
subtype of data-type and has a size of unsigned address units. If data-type is null, the
new data type has no parent data type. An ambiguous condition exists if procreates is executed
in compilation state.

Execution: (stack-diagram —-- 1st)

When used in a stack diagram, specifies an input or output parameter with the new data type.

prompt (--)
If in interpretation state, type a command line prompt.

A typical command line prompt is " ok" (including a leading space) followed by carriage return
and line feed.

prompt is a deferred definition.

protected (--) immediate

Remove the protected vocabulary from both the context vocabulary list and the hidden
vocabulary list. Make the protected vocabulary the head of the context vocabulary list. An
ambiguous condition exists if the protected vocabulary was not included in one of the two
vocabulary lists before protected is executed.

protected-vocabulary (-- vocabulary)

vocabulary is the protected vocabulary. Note that the protected vocabulary is not available
outside the scope of a class definition.

quit (--)
If in compilation state, end compilation. Empty the stack. Empty the interpreter data type heap.
Remove the private, protected and assembler vocabularies from the context vocabulary

list. Delete all exception frames. Make the user input device the default input source. Make the user
output device the default output source. Execute the semantics of the deferred definition (quit).

StrongForth 3.1 Glossary: forth 142

strongforth.sf

strongforth.sf

strongforth.sf

Do not send a message to the default output stream. Repeat the following until the end of the input
source:

Accept a line from the input source, set >1in to zero, and interpret. When all processing has been
completed and no exception is thrown, execute prompt.

After the end of the input source has exceeded, terminate StrongForth and return control to the
operating system.

r-index (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type r-index.

r/o (-- fam)

fam is a constant value for selecting the “read only” file access method when a file is created or
opened.

r/w (-—- fam)

fam is a constant value for selecting the “read and write” file access method when a file is created
or opened.

r> (r-index --) compile-only

Compilation: Append the runtime semantics given below to the current definition. Consume r -
index, the number of cells reserved for locals in the stack frame of the current definition, and
remove the local r@ from the locals vocabulary. An exception is thrown if r@ does not exist.

Runtime: (-- x)

x 18 the value of the local rQ@.

re (complex -- float)

float is the real part of complex.

read (caddress -> character unsigned file -- 3rd)

Read unsigned consecutive characters to caddress -> character from the current
position of the file identified by £ile. If unsigned characters are read without an exception,
3rdis equal to unsigned. If the end of the file is reached before unsigned characters are read,
3rd is the number of characters actually read. If the operation is initiated when the value returned
by position is equal to the value returned by size for the file identified by £ile, 3rd is zero.

An ambiguous condition exists if the operation is initiated when the value returned by position
is greater than the value returned by size for the file identified by £i1le, or if the requested
operation attempts to read portions of the file not written. At the conclusion of the operation,
position returns the next file position after the last character read.

read-line (caddress -> character unsigned file -- 3rd flag)

StrongForth 3.1 Glossary: forth 143

strongforth.sf

strongforth.sf

strongforth.sf

strongforth.sf

Read the next line from the file specified by £i1le into memory at caddress -> character.
At most unsigned characters are read. Up to two line-terminating characters (carriage return and
line feed) may be read into memory at the end of the line, but are not included in the count 3rd.
The line buffer provided by caddress -> character should be at least unsigned + 2
characters long. If the operation succeeded, f1ag is true. If a line terminator was received before
unsigned characters were read, then 3rd is the number of characters actually read, not including
the line terminator (0 <= 3rd <= unsigned). When unsigned = 3rd, the line terminator has
yet to be reached. If the operation is initiated when the value returned by position is equal to the
value returned by s1i ze for the file identified by file, flagis false, and 3rd is zero.

An ambiguous condition exists if the operation is initiated when the value returned by position
is greater than the value returned by size for the file identified by £i1le, or if the requested
operation attempts to read portions of the file not written. At the conclusion of the operation,
position returns the next file position after the last character read.

read-1ine works correctly with files containing <cr>/<1f> or <1 f>-only end-of-line
sequences.

recurse (--) compile-only

Compilation: Change the compiler data type heap according to the stack effect of the current
definition. Append the execution semantics of the current definition to the execution semantics of
current definition. An ambiguous condition exists if recurse appears in a definition after
does>.

reempty (string-output-stream --)

Empty the output buffer of string-output-stream.

reference? (data-type -- flag)

flagis true if and only if data-type has the dt-reference attribute.

refill (-- flag)

Attempt to fill the input buffer of the default input stream. If successful, set >in to zero, and return
true as flag. Receipt of a line containing no characters is considered successful. If there is no
input available from the default input stream, return false as flag.

refill (input-stream -- flag)

Attempt to fill the input buffer of input-stream. If successful set >in to zero and return true
as f1ag. Receipt of a line containing no characters is considered successful. If there is no input
available from input-stream, return false as flag.

refill is avirtual method of the input-stream class.

relocate (address control-flow --)

Specifies address as the code origin or code destination of control-f1low. The code origin is
typically the location of the first instruction of a conditional branch after a jump instruction. The
code destination is typically the location of the first instruction of a loop.

StrongForth 3.1 Glossary: forth 144

strongforth.sf

strongforth.sf

strongforth.sf

rename (caddress -> character unsigned caddress -> character strongforth.sf
unsigned --)

Rename the file with the path given by the first character string caddress -> character
unsigned to the name given by the second character string caddress -> character
unsigned. An exception is thrown if the operation fails.

repeat (origin destination --) compile-only strongforth.sf

Compilation: Append the runtime semantics given below to the current definition, resolving the
backward reference destination. An exception is thrown if the contents of the compiler data
type heap do not exactly match the copy that was saved when destination was created.
Resolve the forward reference or igin using the location following the appended runtime
semantics. Restore the compiler data type heap to the state that was saved when origin was
created.

Runtime: Continue execution at the location given by destination.

replaces ((--string) caddress -> character unsigned --) strext.sf

Set (-—string) as the execution token that provides the text to substitute for the substitution
named caddress -> character unsigned. An ambiguous condition exists if the name of
the substitution contains the delimiter character.

If the substitution does not exist, create a definition with the name specified by the character string
caddress -> character unsigned with the execution semantics defined below.

Execution: (-— caddress -> character unsigned)
caddress -> character unsigned is the text returned by executing (--string).
replaces (caddress -> character unsigned 1lst 3rd --) strext.sf

Set the string caddress —-> character unsigned as the text to substitute for the
substitution named 1st 3rd. An ambiguous condition exists if the name of the substitution
contains the delimiter character.

If the substitution does not exist, create a definition with the name specified by the character string
1st 3rd with the execution semantics defined below.

Execution: (—- caddress -> character unsigned)

caddress -> character unsigned is a copy of the text provided to replaces.

reposition (unsigned-double file --) strongforth.sf

Reposition the file identified by £11e to the file position unsigned-double. An exception is
thrown if the operation fails.

represent (float caddress -> character unsigned -- signed flag float.sf
flag)

At caddress -> character, place the character-string external representation of the
significand of the floating-point number £1oat. Return the decimal-base exponent as signed,

StrongForth 3.1 Glossary: forth 145

the sign of the significand as the first £1ag and valid result as the second £1ag. The character
string consists of the unsigned most significant digits of the significand represented as a decimal
fraction with the implied decimal point to the left of the first digit, and the first digit zero only if all
digits are zero. The significand is rounded to unsigned digits following the round to nearest rule;
signed is adjusted, if necessary, to correspond to the rounded magnitude of the significand. The
second flagis true if and only if f1oat was a valid floating-point number. The first f1ag is
true if and only if £1oat is negative.

An exception is thrown if the value of the number-conversion radix base is not (decimal) 10.

When the second flag is false, signed is always zero, and the string at caddress ->
character contains one of the following, cut off to unsigned characters or extended by
trailing spaces:

unsupported

nan

infinity

denormalized

free

require ("<spaces>name" --) strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. If the file specified by name has
not already been included or required, but not between the definition and execution of a marker,
perform the function of include.

An ambiguous condition exists if a file is required while it is being required or included. An
ambiguous condition exists, if a marker is defined outside and executed inside a file or vice versa,
and the file is required again. An ambiguous condition exists if the same file is required twice using
different names, or different files with the same name are required.

require (caddress -> character unsigned --) strongforth.sf

If the file specified by the string caddress -> character unsigned has already been
included or required, but not between the definition and execution of a marker, drop caddress -
> character unsigned. Otherwise, perform the function of include.

An ambiguous condition exists if a file is required while it is being required or included. An
ambiguous condition exists, if a marker is defined outside and executed inside a file or vice versa,
and the file is required again. An ambiguous condition exists if the same file is required twice using
different names, or different files with the same name are required.

resize (address unsigned -- 1lst) strongforth.sf

Change the size of a memory block that has been previously allocated at address. unsigned is
the new size of the memory block. If address is null, resize performs the semantics of
allocate. If unsigned is zero, resize performs the semantics of free. 1st is the address of
the first byte of the reallocated memory block. Note that 1 st may differ from address. An
exception is thrown if the operation fails. An ambiguous condition exists if address does not
indicate a memory space that was previously obtained by allocate, callocate,
dfallocate, sfallocateor resize.

resize (unsigned-double file --) strongforth.sf

StrongForth 3.1 Glossary: forth 146

Set the size of the file identified by £ile to unsigned-double. If the resultant file is larger
than the file before the operation, the portion of the file added as a result of the operation is
undefined. At the conclusion of the operation, both size and position return the value
unsigned-double. An exception is thrown if the operation fails.

resolve (control-flow --)

Resolve the conditional branch to or from the location that was saved when control-flow was
initialized. Recursively resolve the conditional branches from the locations of all linked origins of
control-flow.

resolve is a virtual method of the control-flow class.

restore (control-flow --)

Restore the compiler data type heap to the state that was saved when control-flow was
initialized.

restore-input (input-stream -- flag)

Attempt to restore the default input stream from input-stream, which was created by save-
input. flagis true if and only if the default input stream cannot be restored.

An ambiguous condition exists if the input source of the default input stream is not the same as that
of input-stream.

restore-input (input-stream 1lst -- flag)

Attempt to restore 1st from input-stream, which was created by save-input. flagis
true if and only if 1st cannot be restored.

An ambiguous condition exists if the input source of 1st is not the same as that of input-
stream.

restore-input is a virtual method of the input-stream class.

retreat (unsigned --) strongforth.sf

Change the order in which definitions are linked within the current vocabulary by inserting the
latest definition immediately before the previous unsigned™ overloaded version with the same
name. An exception is thrown if the latest definition has less than unsigned previously defined
overloaded versions.

return-stack-cells (-- unsigned) strongforth.sf

unsigned is the size of the return stack in cells. Note that StrongForth uses the return stack to
store data as well.

rot (complex complex complex -- 2nd 3rd 1lst)

Rotate the top three stack entries.

StrongForth 3.1 Glossary: forth 147

rot (complex complex double -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (complex complex float -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (complex complex single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (complex double complex -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (complex double double -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (complex double float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (complex double single -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (complex float complex -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (complex float double -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (complex float float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (complex float single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (complex single complex -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (complex single double -- 2nd 3rd 1lst)

StrongForth 3.1 Glossary: forth 148

Rotate the top three stack entries.

rot (complex single float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (complex single single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (double complex complex -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (double complex double -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (double complex float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (double complex single -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (double double complex -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (double double double -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (double double float -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (double double single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (double float complex -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (double float double -- 2nd 3rd 1lst)

Rotate the top three stack entries.

StrongForth 3.1 Glossary: forth 149

rot (double float float -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (double float single -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (double single complex -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (double single double -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (double single float -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (double single single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (float complex complex -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (float complex double -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (float complex float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (float complex single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (float double complex -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (float double double -- 2nd 3rd 1lst)

Rotate the top three stack entries.

StrongForth 3.1 Glossary: forth 150

rot (float double float -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (float double single -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (float float complex -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (float float double -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (float float float -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (float float single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (float single complex -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (float single double -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (float single float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (float single single -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (single complex complex -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (single complex double -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single complex float -- 2nd 3rd 1st)

StrongForth 3.1 Glossary: forth 151

Rotate the top three stack entries.

rot (single complex single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single double complex -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (single double double -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single double float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single double single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single float complex -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single float double -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single float float -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single float single -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single single complex -- 2nd 3rd 1lst)

Rotate the top three stack entries.

rot (single single double -- 2nd 3rd 1st)

Rotate the top three stack entries.

rot (single single float -- 2nd 3rd 1st)

Rotate the top three stack entries.

StrongForth 3.1 Glossary: forth 152

rot (single single single -- 2nd 3rd 1st)

Rotate the top three stack entries.

round (float -- 1lst)

Round float to an integral value using the round to nearest rule, giving 1st.

rrotate (logical -- 1st)

Perform a logical right rotation of one bit-place on 1ogical, giving 1st.

rrotate (logical unsigned -- 1lst)

Perform a logical right rotation of unsigned bit-places on logical, giving 1st.

rshift (logical -- 1lst)

Perform a logical right shift of one bit-place on 1ogical, giving 1st. Put zero into the most
significant bit vacated by the shift.

rshift (logical unsigned -- 1lst)

Perform a logical right shift of unsigned bit-places on 1ogical, giving 1st. Put zeros into the
most significant bits vacated by the shift.

runtime (created-definition -- code-definition)

code-definition is the definition containing the runtime code of created-definition.

runtime! (code-definition created-definition --)

Specifies code-definition as the definition containing the runtime code of created-
definition.

runtime-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

flagis trueifand only if definition was created by create and its runtime code-
definition is equal to single.

Note: Provide search-criterion to search if only definitions created by create with a
given runtime code-definition shall be found.

s. (complex --)

StrongForth 3.1 Glossary: forth 153

complex.sf

Send the real part and the imaginary part of complex with a trailing space using scientific
notation to the default output stream. The significands are greater than or equal to 1.0 and less than
10.0:

exponential notation := <re> + <im> i

<re> = <significand><exponent>

<im> = <significand><exponent>

<significand> = [-]<digits>.<digits0>

<exponent> = e[-]<digit><digit><digit>

<digits> = <digit><digits0>

<digits0> = <digit>*

<digit> ={0 |l 1T 12131415161 7181]29:}

An exception is thrown if the value of the number-conversion radix base is not (decimal) 10.

s. (float --)

Send f£loat with a trailing space using scientific notation to the default output stream. The
significand is greater than or equal to 1.0 and less than 10.0:

exponential notation := <significand><exponent>

<significand> = [-]<digits>.<digits0>

<exponent> = e[-]<digit><digit><digit>

<digits> = <digit><digits0>

<digits0> = <digit>*

<digit> :={ 01 201211 314151 6117128191}

An exception is thrown if the value of the number-conversion radix base is not (decimal) 10.

s>d (integer -- integer-double)

Convert the unsigned single number integer to the unsigned double number integer-
double with the same numerical value.

s>d (signed -- signed-double)

Convert the signed single number signed to the signed double number signed-double with
the same numerical value.

s>d (single -- double)

Convert the unsigned single number single to the unsigned double number double with the
same numerical value.

s>d (unsigned -- unsigned-double)

Convert the unsigned single number unsigned to the unsigned double number unsigned-
double with the same numerical value.

s>f (signed -- float)

float is the floating-point equivalent of the signed single number signed.

StrongForth 3.1 Glossary: forth 154

float.sf

s>f (single -- float)

float is the floating-point equivalent of the unsigned single number single.

save-buffers (--) block.sf

If the block buffer is marked as modified, transfer its contents to the block file. Mark the block
buffer as not modified. An exception is thrown if the block buffer is assigned to an invalid block.

save-input (-- input-stream)

input-streamis a copy of the default input stream made for later use by restore-input.
Note that the copy shares the input buffer with the original.

save-input (input-stream -- 1lst)

1st is a copy of the input-stream made for later use by restore-input. Note that the
copy shares the input buffer with the original.

save-input is a virtual method of the input-stream class.

scr (—-- address -> unsigned) block.sf

address -> unsigned is the address of a cell containing the number of the block most
recently 1isted.

search (caddress -> character unsigned 1st 3rd -- 1lst 3rd flag)

Search the string specified by caddress -> character unsigned for the sub-string
specified by 1st 3rd.If flagis true, a match was found at 1st with 3rd characters
remaining. If f1ag is false there was no match and 1st is caddress —-> character and
3rdisunsigned.

search (caddress -> character unsigned single search-criterion
vocabulary -- definition flag)

Search vocabulary for the definition whose name is given by the character string caddress
-> character unsigned. If the definition is found, return it as definition and true as
flag. If the definition is not found, return null as definition and false as flag.

search-criterion is the token of an additional match criterion. If the additional match
criterion requires a parameter, the parameter is passed by single.

If unsigned is zero, the definition's name is not considered. Only the match criterion specified by
search-criterion and single matters.

search is a virtual method of the vocabulary class.

search-all (caddress -> character unsigned single search-
criterion -- definition flag)

Search the first context vocabulary for the definition whose name is given by the character string
caddress -> character unsigned. search-criterion is the token of an additional

StrongForth 3.1 Glossary: forth 155

match criterion. If the additional match criterion requires a parameter, the parameter is passed by
single.

If unsigned is zero, the definition's name is not considered. Only the match criterion specified by
search-criterion and single matters.

If the definition is found, return it as definition and true as f£1lag. If the definition is not

found, try to search all other context vocabularies and then all hidden vocabularies, until either a
definition is found or until the last vocabulary in the hidden vocabulary list has been searched. If
the definition is not found in any vocabulary, return zero as definition and false as flag.

search-context (caddress -> character unsigned single search-
criterion -- definition flag)

Search the first context vocabulary for the definition whose name is given by the character string
caddress -> character unsigned. search-criterion is the token of an additional
match criterion. If the additional match criterion requires a parameter, the parameter is passed by
single.

If unsigned is zero, the definition's name is not considered. Only the match criterion specified by
search-criterion and single matters.

If the definition is found, return it as definition and true as £1lag. If the definition is not
found, try to search the other context vocabularies, until either a definition is found or until the last
vocabulary in the context vocabulary list has been searched. If the definition is not found in any of
the context vocabularies, return zero as definition and false as flag.

search-criterion (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type search-
criterion.

search-list (caddress -> character unsigned single search-
criterion vocabulary -- definition flag)

Search vocabulary for the definition whose name is given by the character string caddress
-> character unsigned. search-criterion is the token of an additional match
criterion. If the additional match criterion requires a parameter, the parameter is passed by
single.

If unsigned is zero, the definition's name is not considered. Only the match criterion specified by
search-criterion and single matters.

If the definition is found, return it as definition and true as £1lag. If the definition is not
found, try to search the other vocabularies linked to vocabulary, until either a definition is
found or until the last vocabulary in the vocabulary list has been searched. If the definition is not
found in any of the vocabularies, return zero as definition and false as flag.

search-local (caddress -> character unsigned -- local-definition
flag)

Search the locals vocabulary for the definition whose name is given by the character string
caddress -> character unsigned. If state is true and the definition is found, return
itas local-definitionand true as flag. If state is false or the definition is not
found, return zero as definition and false as flag.

StrongForth 3.1 Glossary: forth 156

search-order (stack-diagram -- 1lst) order.sf

When used in a stack diagram, specifies an input or output parameter with data type search-
order.

see ("<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Search the context vocabularies
for name. Send a human-readable representation of the definition of name, including its stack
diagram, to the default output stream.

see (definition --)

Send a human-readable representation definition, including its stack diagram, to the default
output stream.

see is a virtual method of the definition class.

set-current (vocabulary --) order.sf

Make vocabulary the current compilation vocabulary.

set-order (search-order --) order.sf

Restore the context vocabulary list and the hidden vocabulary list from search-order.
search-order is an identifier created by get-order.

set-precision (unsigned --) float.sf

Set the number of significant digits currently used by ., e., and s . to the minimum of max-
precision and unsigned.

set? (single logical -- flag)

flagis true if and only if the bit-by-bit logical and of single and 1ogical is not equal to
zero.

sf, (complex --)

Reserve space for two single-precision floating-point numbers in the default memory space and
store complex as a complex single-precision floating-point number in it. If the first unused
address of the default memory space is cell aligned prior to execution of sf,, it will remain cell
aligned when sf, finishes execution. An ambiguous condition exists if the first unused address of
the default memory space is not cell aligned prior to execution of sf, . An exception is thrown if
the default memory space overflows.

sf, (complex memory-space --)

Reserve space for two single-precision floating-point numbers in memory-space and store
complex as a complex single-precision floating-point number in it. If the first unused address of

StrongForth 3.1 Glossary: forth 157

memory-space is cell aligned prior to execution of s, , it will remain cell aligned when sf,
finishes execution. An ambiguous condition exists if the first unused address of memory-space
is not cell aligned prior to execution of sf, . An exception is thrown if memory-space
overflows.

sf, (float --)

Reserve space for a single-precision floating-point number in the default memory space and store
float as a single-precision floating-point number in it. If the first unused address of the default
memory space is cell aligned prior to execution of sf,, it will remain cell aligned when sf,
finishes execution. An ambiguous condition exists if the first unused address of the default memory
space is not cell aligned prior to execution of sf,. An exception is thrown if the default memory
space overflows.

sf, (float memory-space --)

Reserve space for a single-precision floating-point number in memory-space and store f1loat
as a single-precision floating-point number in it. If the first unused address of memory-space is
cell aligned prior to execution of s£,, it will remain cell aligned when sf, finishes execution. An
ambiguous condition exists if the first unused address of memory-space is not cell aligned prior
to execution of sf, . An exception is thrown if mnemory-space overflows.

sfaddress (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type sfaddress.

sfalign (--) float.sf

If the first unused address of the default memory space is not single-precision floating-point
aligned, reserve the required number of address units to make it single-precision floating-point
aligned.

sfalign (memory-space --) float.sf

If the first unused address of memory-space is not single-precision floating-point aligned,
reserve the required number of address units to make it single-precision floating-point aligned.

sfaligned (address -- 1lst) float.sf

1st is the lowest single-precision floating-point aligned address greater than or equal to
address.

sfallocate (unsigned -- sfaddress)

Allocate unsigned address units of contiguous dynamic memory space. The initial content of the
allocated memory space is undefined. If the allocation succeeds, sfaddress is the aligned
starting address of the allocated memory space. An exception is thrown if the operation fails.

sfhere (-- sfaddress)

StrongForth 3.1 Glossary: forth 158

sfaddress is the first unused address of the default memory space.

sfhere (memory-space -- sfaddress)

sfaddress is the first unused address of memory-space.

sfloats (integer -- 1st)

1st is the size in address units of integer single-precision floating-point numbers.

sfmember (object-size complex '"<spaces>name" -- 1lst)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to single-precision floating-point numbers, plus the size in bits of two
single-precision floating-point numbers.

name is referred to as a class member. s fmember reserves space for two single-precision
floating-point numbers for a class member of the same data type as complex in the class that is
currently being defined.

Execution: (x -- sfaddress -> y)

sfaddress -> yis the address of the class member of the object x, that was reserved at the
time name was created. y is the actual data type that was provided to sfmember as complex.

sfmember (object-size float "<spaces>name" -- 1lst)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to single-precision floating-point numbers, plus the size in bits of a single-
precision floating-point number.

name is referred to as a class member. sfmember reserves space for one single-precision
floating-point number for a class member of the same data type as £1oat in the class that is
currently being defined.

Execution: (x -- sfaddress -> y)

sfaddress -> yis the address of the class member of the object x, that was reserved at the
time name was created. y is the actual data type that was provided to s fmember as float.

sfmembers (object-size complex unsigned "<spaces>name" -- 1lst)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to single-precision floating-point numbers, plus unsigned times the size
in bits of a complex single-precision floating-point number.

name is referred to as a class member. s fmembers reserves unsigned complex single-
precision floating-point numbers for an array of unsigned class members of the same data type
as complex in the class that is currently being defined.

Execution: (x -- sfaddress -> y)

StrongForth 3.1 Glossary: forth 159

float.sf

complex.sf

float.sf

complex.sf

sfaddress -> yisthe address of an array of unsigned class members of the object x, that
were reserved at the time name was created. y is the actual data type that was provided to
sfmembers as complex.

sfmembers (object-size float unsigned "<spaces>name" -- 1lst) float.sf

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size aligned to single-precision floating-point numbers, plus unsigned times the size
in bits of a single-precision floating-point number.

name is referred to as a class member. sfmembers reserves unsigned single-precision
floating-point numbers for an array of unsigned class members of the same data type as float
in the class that is currently being defined.

Execution: (x -- sfaddress -> y)

sfaddress -> yisthe address of an array of unsigned class members of the object x, that
were reserved at the time name was created. y is the actual data type that was provided to
sfmembers as float.

sfvariable (complex "<spaces>name" --) complex.sf

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve space for two single-precision floating-point
numbers at a single-precision floating-point aligned address in the data-space memory space
and store complex at the address.

name 1is referred to as a variable.
Execution: (-- sfaddress -> x)

sfaddress -> xis the address of the complex single-precision floating-point number. x has
the same data type as was supplied to variable.

sfvariable (float "<spaces>name" --) float.sf

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve space for a single-precision floating-point number
at a single-precision floating-point aligned address in the data-space memory space and store
float at the address.

name is referred to as a variable.
Execution: (-- sfaddress -> x)

sfaddress -> xis the address of the single-precision floating-point number. x has the same
data type as was supplied to variable.

sfvariables (complex unsigned "<spaces>name" --) complex.sf

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve space for unsigned complex single-precision
floating-point numbers at a single-precision floating-point aligned address in the data-space
memory space and store complex in each of them.

StrongForth 3.1 Glossary: forth 160

name is referred to as a variable.
Execution: (-- sfaddress -> x)

sfaddress -> xis the address of the first complex single-precision floating-point number. x
has the same data type as was supplied to variable.

sfvariables (float unsigned "<spaces>name" --) float.sf

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve space for unsigned single-precision floating-
point numbers at a single-precision floating-point aligned address in the data-space memory
space and store £ 1oat in each of them.

name is referred to as a variable.
Execution: (-- sfaddress -> x)

sfaddress -> xis the address of the first single-precision floating-point number. x has the
same data type as was supplied to variable.

shrink (integer --)

Reduce the size of the default memory space by integer address units. An exception is thrown if
integer is negative or greater than the number of unused address units in the default memory
space.

The released memory is not automatically returned to the system.

shrink (integer memory-space --)

Reduce the size of memory-space by integer address units. An exception is thrown if
integer is negative or greater than the number of unused address units in memory-space.

The released memory is not automatically returned to the system.

sign (signed-double --) strongforth.sf

If signed-double is true, add a minus sign to the beginning of the pictured numeric output
string.

signed (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type signed.

signed-double (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type signed-
double.

sin (complex -- 1lst) complex.sf

1st is the complex sine of the radian angle complex.

StrongForth 3.1 Glossary: forth 161

sin (float -- 1st)

1st is the sine of the radian angle f1oat.

sincos (float -- 1lst 1lst)

The first 1st is the sine of the radian angle f1oat. The second 1st is the cosine of the radian
angle float.

single (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type single.
single has no parent data type.

single-definition (caddress -> character unsigned single-
definition -- 4 th)

Initialize single-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update 1atest. Links will be removed when single-
definition is deleted. Assign single-definition aname given by the character string
caddress -> character unsignedandreturnitas 4 th.

single-definition is a constructor of the single-definition class.

single-definition (single-definition -- 1lst)

Initialize single-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update 1atest. Links will be removed when single-
definition s deleted. 1st is single-definition.

single-definition is a constructor of the single-definition class.

single-definition (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type single-
definition.

single? (integer-double -- flag)

flagis true if and only if integer-double can be represented as an unsigned single-cell
integer, 1. €., its value is less than max-unsigned.

single? (signed-double -- flag)

flagis true if and only if signed-double can be represented as a signed single-cell integer,
1. e., its value is between max-signed negate 1-and max-signed.

sinh (complex -- 1lst) complex.sf

1st is the complex hyperbolic sine of complex.

StrongForth 3.1 Glossary: forth 162

sinh (float -- 1lst) float.sf

1st is the hyperbolic sine of f1oat.

size (address -- unsigned) strongforth.sf

unsigned is the size in address units of the allocated memory block at address. An ambiguous
condition exists if address does not indicate a memory space that was previously obtained by
allocate,callocate,dfallocate, sfallocate or resize.

size (data-type -- unsigned)

unsigned is the size in address units of items of data type data-type, or zero if the size
cannot be determined.

size (file -- unsigned-double) strongforth.sf

unsigned-double is the size in characters of the file identified by file. size does not affect
the value returned by position. An exception is thrown if the operation fails.

size (object -- unsigned)

unsigned is the memory size in address units of object.

size (vtable -- unsigned)

unsigned is the memory size in address units of objects whose virtual method table is vtable.

sliteral (caddress -> character unsigned --) compile-only strongforth.sf

Compilation: Allot unsigned characters in the data-space memory space. Align the data-
space memory space. Copy the character string specified by caddress -> character
unsigned to the allotted memory area. Append the runtime semantics given below to the current
definition.

Runtime: (-- caddress -> character unsigned)

Place the address of the copied character string caddress -> character unsigned onto
the stack. Both items have the same data types as were supplied at compilation time.

sm/rem (signed-double signed -- 2nd signed)

Divide signed-double by signed, giving the symmetric quotient signed and the remainder
2nd. An exception is thrown if signed is zero. An ambiguous condition exists if the quotient lies
outside the range of a signed single-precision number.

smember (object-size data-type "<spaces>name" -- 1lst) struct.sf

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size, plus the size in bits of the structure associated with data-type. An exception is
thrown if data-type is not directly or indirectly derived from structure.

StrongForth 3.1 Glossary: forth 163

name is referred to as a class member. smember reserves space for an embedded structure with
data type data-type in the structure that is currently being defined.

Execution: (x -- address -> y)

address -> yis the address of the member of the structure x, that was reserved at the time
name was created. y is an item with data type data-type.

smembers (object-size data-type unsigned "<spaces>name" -- 1lst) struct.sf

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below, and make it the latest definition. 1st is equal to
object-size, plus unsigned times the size in bits of the structure associated with data-
type. An exception is thrown if data-type is not directly or indirectly derived from
structure.

name is referred to as a class member. smember reserves space for an array of unsigned
embedded structures with data type data-type in the structure that is currently being defined.

Execution: (x -- address -> y)

address -> yisthe address of an array of unsigned members of the structure x, that were
reserved at the time name was created. y is an item with data type data-type.

source (-- caddress -> character unsigned)

caddress -> character is the address of the input buffer of the default input stream.
unsigned is the number of characters in the input buffer of the default input stream.

source (input-stream -- caddress -> character unsigned)

caddress —-> character is the address of the input buffer of input-stream. unsigned
is the number of characters in the input buffer of input-stream.

sp! (address --)

Make address the current value of the stack pointer.

sp@ (-- address)

address is the value of the stack pointer before address was pushed onto the stack.

space (--)

Send a space character to the default output stream.

spaces (integer --) strongforth.sf
If integer is greater than zero, send integer spaces to the default output stream.

Note: integer is assumed to be a signed number.

split (complex -- float float)

StrongForth 3.1 Glossary: forth 164

Splits a complex floating-point number complex into two floating-point numbers f1oat. The
first one is the real part, the second one is the imaginary part.

split (double -- single single)

Splits a double-cell item double into two single-cell items single. The most significant part is
on top of the stack.

split (float -- signed 1st)

signed is the exponent of f1oat. 1st is the mantissa of £1oat with the exponent being zero.

sqrt (complex -- 1lst) complex.sf

1st is the complex square root of complex.

sqrt (float -- 1st)

1st is the square root of f1oat. An ambiguous condition exists if £1oat is less than zero.

stack-cells (-- unsigned) strongforth.sf

unsigned is the size of the data stack in cells. Since StrongForth has no data stack, stack-
cells is the number of cells than can be stored in general-purpose processor registers.

stack-diagram (flag stack-diagram -- 2nd)

Initialize stack-diagram by erasing all members. Save £1ag as the compilation state. The
compilation state is restored once stack-diagram is deleted.

stack-diagram is the constructor of the stack-diagram class.

stack-diagram (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type stack-
diagram.

stack-space (-- memory-space)

memory-space is the system’s stack space. The combined data and return stack as well as user
variables are stored in the stack space.

stack: (stack-diagram -- 1lst)

When used in a stack diagram, specifies the succeeding input or output parameter shall be assigned
to the stack. An exception is thrown if the input or output parameter is not a single-cell or double-
cell parameter.

state (-- caddress -> flag)

StrongForth 3.1 Glossary: forth 165

caddress —-> flagis the address of the compilation state. state is true when in
compilation state, and false when in interpretation state.

static-compiler-workspace (-- compiler-workspace)

compiler-workspace is a static instance of the compiler-workspace class that is used
by compile,, literal,, ?2congruent and match-criterion.

status (caddress -> character unsigned -- address)

Allocate 9 consecutive memory cells and return the address of the first cell as address. Store
information about the file with the path given by the string caddress -> character
unsigned in the allocated memory cells. An exception is thrown if the operation fails.

stderr (-- file)

file is the device handle of the system’s standard error output. Since stderrisa value, it can
be redirected with to.

stdin (-- file)

file is the device handle of the system’s standard input. Since stdin is a value, it can be
redirected with to.

stdout (-- file)

file is the device handle of the system’s standard output. Since stdout is a value, it can be
redirected with to.

store (complex value-definition --)

Store complex in the value whose memory location is represented by value-definition.
Note that store is not type-save. An ambiguous condition exists if the data type of the value is
not a complex floating-point number.

store (double value-definition --)

Store double in the value whose memory location is represented by value-definition.
Note that store is not type-save. An ambiguous condition exists if the data type of the value is
not a double cell.

store (float value-definition --)

Store f1oat in the value whose memory location is represented by value-definition. Note
that store is not type-save. An ambiguous condition exists if the data type of the value is not a
floating-point number.

store (single value-definition --)

StrongForth 3.1 Glossary: forth 166

strongforth.sf

Store single in the value whose memory location is represented by value—-definition.
Note that store is not type-save. An ambiguous condition exists if the data type of the value is
not a single cell.

string (string-output-stream -- caddress -> character unsigned) strongforth.sf

caddress -> character is the address of the output buffer of string-output-stream.
unsigned is the number of characters that have been sentto string-output-stream.

string-input-stream (caddress -> character unsigned string-input-
stream -- 4 th)

Initialize string-input-stream by erasing all members. Make caddress ->
character unsigned the input buffer. 4 this string-input-stream. The input buffer
will not be deallocated when string-input-streamis deleted.

string-input-streamis a constructor of the string-input-stream class.

string-input-stream (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type string-
input-stream.

string-input-stream (string-input-stream 1lst - 1st)

Copy all members of string-—input-streamto 1st. 1stis 1st. 1st shares the same input

buffer as string-input-stream. The input buffer will not be deallocated when 1st is
deleted.

string-input-streamis a constructor of the string-input-stream class.

string-output-stream (caddress -> character unsigned string- strongforth.sf
output-stream -- 4 th)

Initialize string-output-stream by erasing all members. Make caddress ->
character unsigned the output buffer. 4 this string-output-stream. The output
buffer will not be deallocated when string-output-streamis deleted.

string-output-stream is the constructor of the string-output-stream class.

string-output-stream (stack-diagram -- 1lst) strongforth.sf

When used in a stack diagram, specifies an input or output parameter with data type string-
output-stream.

structure (stack-diagram -- 1lst) struct.sf

When used in a stack diagram, specifies an input or output parameter with data type structure.

structure-attributes (data-type unsigned structure-attributes -- struct.sf
3rd)

StrongForth 3.1 Glossary: forth 167

Initialize structure-attributes by erasing all members. Store the attributes of data-
type as the parent of the data type associated with structure-attributes. Store
unsigned as the size of the data type associated with structure-attributes.

structure-attributes is the constructor of the structure-attributes class.

structure-attributes (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type structure-
attributes.

structure-size (data-type -- unsigned)

unsigned is the memory size in address units of a structure with data type data-type. An
exception is thrown if data-type is not directly or indirectly derived from structure.

structure? (data-type -- flag)

flagis trueifand only if data-type is equal to structure, or if data-type is directly
or indirectly derived from structure.

substitute (caddress -> character unsigned -- unsigned)

Perform substitution on the string caddress -> character unsigned sending the result
to the default output stream. unsigned is the number of substitutions made, or zero if an error
occurred. Substitution occurs left to right starting at caddress -> character in one pass and
is non-recursive.

When text of a potential substitution name, surrounded by delimiters, is encountered by
substitute, the following occurs:

If the text is null, a single de1imiter character is sent to the default output stream, i.e., two
delimiter characters are replaced by one. The current number of substitutions is not changed.

If the text is a valid substitution name acceptable to replaces, the leading and trailing
delimiter characters and the enclosed substitution name are replaced by the substitution text.
The current number of substitutions is incremented.

If the text is not a valid substitution name, the name with leading and trailing delimiters is sent
unchanged to the default output stream. The current number of substitutions is not changed. Parsing
of the input string resumes after the trailing delimiter.

If after processing any pairs of delimiters, the residue of the input string contains a single
delimiter, the residue is sent unchanged to the default output stream.

substitute (caddress -> character unsigned caddress -> character
unsigned -- 4 th 6 th unsigned)

Perform substitution on the first string caddress -> character unsigned placing the
result at the second string caddress -> character unsigned. 4 th isthe second
caddress -> character, 6th is the length of the resulting string. An exception is thrown if
the resulting string is longer than the second unsigned. The return value unsigned is the
number of substitutions made, or zero if an error occurred, leaving 4 th and 6 th undefined.

StrongForth 3.1 Glossary: forth 168

struct.sf

struct.sf

struct.sf

strext.sf

strext.sf

Substitution occurs left to right starting at caddress -> character in one pass and is non-
recursive.

When text of a potential substitution name, surrounded by delimiters, is encountered by
substitute, the following occurs:

If the text is null, a single delimiter character is passed to the output, i.e., two delimiter
characters are replaced by one. The current number of substitutions is not changed.

If the text is a valid substitution name acceptable to replaces, the leading and trailing
delimiter characters and the enclosed substitution name are replaced by the substitution text.
The current number of substitutions is incremented.

If the text is not a valid substitution name, the name with leading and trailing delimitersis
passed unchanged to the output. The current number of substitutions is not changed. Parsing of the
input string resumes after the trailing delimiter.

If after processing any pairs of delimiters, the residue of the input string contains a single
delimiter, the residue is passed unchanged to the output.

substitute (file file -- unsigned)

Perform substitution on the contents of the first £1 1e writing the result to the second £ile. The
return value unsigned is the number of substitutions made, or zero if an error occurred.
Substitution occurs from the start to the end of the first £i1e in one pass and is non-recursive.

When text of a potential substitution name, surrounded by delimiters, is encountered by
substitute, the following occurs:

If the text is null, a single de1imiter character is written to the output file, i.e., two
delimiter characters are replaced by one. The current number of substitutions is not changed.

If the text is a valid substitution name acceptable to replaces, the leading and trailing
delimiter characters and the enclosed substitution name are replaced by the substitution text.
The current number of substitutions is incremented.

If the text is not a valid substitution name, the name with leading and trailing delimitersis
written unchanged to the output file. The current number of substitutions is not changed. Parsing of
the input string resumes after the trailing delimiter.

If after processing any pairs of delimiters, the residue of the current line contains a single
delimiter, the residue is written unchanged to the output file.

swap (complex complex -- 2nd 1lst)

Exchange the two items on top of the stack.

swap (complex double -- 2nd 1lst)

Exchange the two items on top of the stack.

swap (complex float -- 2nd 1st)

Exchange the two items on top of the stack.

swap (complex single -- 2nd 1lst)

StrongForth 3.1 Glossary: forth 169

strext.sf

Exchange the two items on top of the stack.

swap (double complex -- 2nd 1lst)

Exchange the two items on top of the stack.

swap (double double -- 2nd 1lst)

Exchange the two items on top of the stack.

swap (double float -- 2nd 1lst)

Exchange the two items on top of the stack.

swap (double single -- 2nd 1lst)

Exchange the two items on top of the stack.

swap (float complex -- 2nd 1lst)

Exchange the two items on top of the stack.

swap (float double -- 2nd 1st)

Exchange the two items on top of the stack.

swap (float float -- 2nd 1st)

Exchange the two items on top of the stack.

swap (float single -- 2nd 1st)

Exchange the two items on top of the stack.

swap (single complex -- 2nd 1lst)

Exchange the two items on top of the stack.

swap (single double -- 2nd 1lst)

Exchange the two items on top of the stack.

swap (single float -- 2nd 1st)

Exchange the two items on top of the stack.

swap (single single -- 2nd 1lst)

Exchange the two items on top of the stack.

StrongForth 3.1 Glossary: forth

170

tan (complex -- 1st) complex.sf

1st is the complex tangent of the radian angle complex. An ambiguous condition exists if the
complex cosine of complex is zero.

tan (float -- 1lst) float.sf

1st is the tangent of the radian angle f1oat. An ambiguous condition exists if the cosine of
float is zero.

tanh (complex -- 1lst) complex.sf

1st is the complex hyperbolic tangent of complex.

tanh (float -- 1lst) float.sf

1st is the hyperbolic tangent of f1oat.

terminal-input-stream (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type terminal-
input-stream.

terminal-input-stream (terminal-input-stream 1lst - 1lst)

Copy all members of terminal-input-streamto 1st. 1stis 1st. 1st shares the same
input buffer as terminal-input-stream. The input buffer will not be deallocated when 1st
is deleted. An ambiguous condition exists if 1st is used after terminal-input-stream has
been deleted.

terminal-input-stream is a constructor of the terminal-input-stream class.

terminal-input-stream (unsigned terminal-input-stream -- 2nd)

Initialize terminal-input-stream by erasing all members. Allocate unsigned characters
from dynamic memory as input buffer. 2nd is terminal-input-stream.

terminal-input-stream is a constructor of the terminal-input-stream class.

terminal-output-stream (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type terminal -
output-stream.

terminal-output-stream (terminal-output-stream -- 1lst)

No operation, because class terminal-output-stream has no members. 1st is
terminal-output-stream.

terminal-output-stream is the constructor of the terminal-output-stream class.

StrongForth 3.1 Glossary: forth 171

th (stack-diagram unsigned -- 1lst)

Append a reference to the basic data type with the position unsigned of the input parameter list,
starting with 1, as an input or output parameter to stack-diagram.

th is used in a stack diagram to specify input or output parameters which should have exactly the
same data type as the actual data type at the position unsigned in the input parameter list of the
same definition. Since the index refers to the basic data types in the input parameter list, it is
possible to build a reference to the tail of a compound data type representing an input parameter.

An exception is thrown if unsigned is zero, if unsigned is greater than the length of the input
parameter list, if the referenced data type is itself a reference, or if the internal storage for input and
output parameters of stack-diagram is exceeded.

then (origin --) compile-only

Compilation: Append the runtime semantics given below to the current definition. Resolve the
forward reference origin using the current location. An exception is thrown if the contents of the
compiler data type heap do not match the copy that was saved when origin was created.

Runtime: Continue execution.

this-attributes (-- class-attributes)
class-attributes is the attributes of the data type of the class that is currently being defined.

this-attributesisavalue.

this-vtable (-- vtable)

vtable is the virtual method table of the class that is currently being defined.

throw (signed --)
If signed is not equal to zero, perform the following semantics:

If a current exception frame exists, throw an exception with signed using this exception frame. If
no exception frame exists, execute the semantics of the deferred definition error.

throw (signed exception-frame --)

Save signed as error code in exception-frame. Restore the default input stream and the
input source specification to the state they had when exception-frame was initialized.
Continue execution at the location at which exception-frame was created, immediately before
obtaining the error code.

thru (unsigned 1lst --)

load the blocks number ed unsigned through 1st in sequence. Other stack
effects are due to the words 1oaded. An exception is thrown if unsigned is greater than 1st, or
if either unsigned or 1st are no valid block numbers.

StrongForth 3.1 Glossary: forth 172

strongforth.sf

strongforth.sf

block.sf

ticks (-- unsigned) strongforth.sf

unsigned is the number of milliseconds elapsed since initialization of the MSVCRT library. An
exception is thrown if the operation fails.

time&date (-- unsigned unsigned unsigned unsigned unsigned
unsigned)

Return the current time and date represented by six unsigned numbers in the given order: second
(0 to 59), minute (0 to 59), hour (0 to 23), day (1 to 31), month (1 to 12), and year (e.g., 2007). The
year is on top of the stack.

to ("<spaces>name" --) compile-only strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. Append the runtime semantics
given below to the current definition. An exception is thrown if name is not either a value
definition or a locals definition, or if the compound data type on top of the compiler data type heap
does not match the tail of the compound data type of the output parameter of name.

Runtime: (x --)

Store x in the value or local identified by name.

to (complex '"<spaces>name" --) execute-only complex.sf

Skip leading space delimiters. Parse name delimited by a space. Store complex in the value
identified by name. An exception is thrown if name is not a value definition or if complex does
not match the tail of the compound data type of the output parameter of name.

to (double "<spaces>name" --) execute-only strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. Store double in the value
identified by name. An exception is thrown if name is not a value definition or if double does
not match the tail of the compound data type of the output parameter of name.

to (float "<spaces>name" --) execute-only float.sf

Skip leading space delimiters. Parse name delimited by a space. Store f1oat in the value
identified by name. An exception is thrown if name is not a value definition or if £1oat does not
match the tail of the compound data type of the output parameter of name.

to (single "<spaces>name" --) execute-only strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. Store single in the value
identified by name. An exception is thrown if name is not a value definition or if single does
not match the tail of the compound data type of the output parameter of name.

to-local-definition (local-definition to-local-definition -- 2nd

)

StrongForth 3.1 Glossary: forth 173

Initialize to-local-definition by copying all members of local-definition. Assign
the null string as the name of to-local-definition. The output parameter of local-
definition becomes the input parameter of to-local-definition.

Note: to-local-definition is used as a temporary definition that allows changing the value
of local-definition in atype-save way.

to-local-definition is the constructor of the to-local-definition class.

to-local-definition (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type to-local-
definition.

to-value-definition (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type to-value-
definition.

to-value-definition (value-definition to-value-definition -- 2nd

)

Initialize to-value-definition by copying all members of value-definition. Assign
the null string as the name of to-value-definition. The output parameter of value-
definition becomes the input parameter of to-value-definition.

Note: to-value-definition is used as a temporary definition that allows changing the value
of value-definition in a type-save way.

to-value—-definition is the constructor of the to-value-definition class.

token (definition -- token)

If definition is a code definition, token is the execution token of definition. The
execution token is actually the address of the first machine code instruction of the code definition.
Otherwise, token is null.

token is a virtual method of the definition class.

token (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type token.

token-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)
flagis true if and only if the value of single is the execution token of definition.

Note: Provide search-criterion to search in order to find a code definition or a colon
definition with a specific execution token.

StrongForth 3.1 Glossary: forth 174

strongforth.sf

true (-- flag)

flagisa true flag, a single-cell item with all bits set to 1.

trunc (float -- 1lst)

Round float to an integral value using the round toward zero rule, giving 1st.

tuck (complex complex -- 2nd 1lst 2nd)
Copy the first (top) stack item below the second stack item.

tuck (complex double -- 2nd 1lst 2nd)
Copy the first (top) stack item below the second stack item.

tuck (complex float -- 2nd 1st 2nd)
Copy the first (top) stack item below the second stack item.

tuck (complex single -- 2nd 1lst 2nd)
Copy the first (top) stack item below the second stack item.

tuck (double complex -- 2nd 1lst 2nd)
Copy the first (top) stack item below the second stack item.

tuck (double double -- 2nd 1lst 2nd)
Copy the first (top) stack item below the second stack item.

tuck (double float -- 2nd 1lst 2nd)
Copy the first (top) stack item below the second stack item.

tuck (double single -- 2nd 1lst 2nd)
Copy the first (top) stack item below the second stack item.

tuck (float complex -- 2nd 1lst 2nd)
Copy the first (top) stack item below the second stack item.

tuck (float double -- 2nd 1lst 2nd)
Copy the first (top) stack item below the second stack item.

StrongForth 3.1 Glossary: forth

175

tuck (float float -- 2nd 1lst 2nd)

Copy the first (top) stack item below the second stack item.

tuck (float single -- 2nd 1st 2nd)

Copy the first (top) stack item below the second stack item.

tuck (single complex -- 2nd 1lst 2nd)
Copy the first (top) stack item below the second stack item.

tuck (single double -- 2nd 1lst 2nd)

Copy the first (top) stack item below the second stack item.

tuck (single float -- 2nd 1st 2nd)

Copy the first (top) stack item below the second stack item.

tuck (single single -- 2nd 1lst 2nd)
Copy the first (top) stack item below the second stack item.

type (caddress -> character unsigned --)

Send unsigned characters starting at caddress —-> character to the default output stream.

type (caddress -> character unsigned output-stream --)
Send unsigned characters starting at caddress -> character to output-stream.

type is a virtual method of the output-stream class.

unassigned (object --)

Throws an exception, indicating that a virtual method of object has not yet been assigned.

unchanged (stack-diagram -- 1lst)

During specification of the stack diagram stack-diagram of a code definition or a colon
definition, mark a list of registers as being preserved by the definition. The preservation is
guaranteed by compiling appropriate push, and pop, assembler instructions at the beginning and
at the end of the definition, respectively. 1st is equal to stack-diagram. Registers have to be
considered only when programming in assembler.

unescape (caddress -> character unsigned --)

Perform substitution on the string caddress -> character unsigned sending the result
to the default output stream. Substitution occurs left to right starting at caddress —->
character in one pass and is non-recursive.

StrongForth 3.1 Glossary: forth 176

strext.sf

Replace each delimiter character in the input string with two delimiter characters.

unescape (caddress -> character unsigned caddress -> character strext.sf
unsigned - 4 th 6 th)

Perform substitution on the first string caddress -> character unsigned placing the
result at the second string caddress -> character unsigned.4 th isthe second
caddress -> character, 6th is the length of the resulting string. An exception is thrown if
the resulting string is longer than the second unsigned. Substitution occurs left to right starting at
caddress -> character in one pass and is non-recursive.

Replace each delimiter character in the input string with two delimiter characters.

unescape (file file --) strext.sf

Perform substitution on the contents of the first £1 1e writing the result to the second file.
Substitution occurs from the start to the end of the first £i1e in one pass and is non-recursive.

Replace each delimiter character in the input file with two delimiter characters.

union (object-size -- 1lst 1lst 1st) strongforth.sf

Starts a union of members within a class definition. All parameters 1 st are equal to object-
size. The first 1 st is the starting bit position of the union, the second 1st is the end bit position
of the largest block so far, and the third 1 st is the current bit position of the current block.

unpack (single -- single single single single)
Unpacks the four bytes of single with zero extension into four items with data type single.

The first output single is the most significant byte of input single. The second output
single is the second most significant byte of input single. The third output single is the
second least significant byte of input single. The fourth output single is the least significant
byte of input single.

unpack (signed -- signed signed signed signed)
Unpacks the four bytes of signed with sign extension into four items with data type signed.

The first output signed is the most significant byte of input signed. The second output
signed is the second most significant byte of input signed. The third output signed is the
second least significant byte of input signed. The fourth output signed is the least significant
byte of input signed.

unsigned (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type unsigned.

unsigned-double (stack-diagram -- 1st)

When used in a stack diagram, specifies an input or output parameter with data type unsigned-
double.

StrongForth 3.1 Glossary: forth 177

until (destination --) compile-only strongforth.sf

Compilation: Append the runtime semantics given below to the current definition, resolving the
backward reference destination. An exception is thrown if the contents of the compiler data
type heap, after consuming single, do not exactly match the copy that was saved when
destination was created.

Runtime: (single —-)

If single is zero, continue execution at the location specified by destination. Otherwise,
continue execution. single is not taken into consideration when comparing the contents of the
compiler data type heap with the copy that was saved when destination was created.

unused (-- unsigned)

unsigned is the number of address units remaining in the default memory space, starting at
here.

unused (memory-space -- unsigned)

unsigned is the number of address units remaining in memory-space, starting at here.

upcase (caddress -> character unsigned --) ascii.sf

Replace each lowercase letter within the character string caddress -> character
unsigned into the equivalent uppercase letter. All other characters remain unchanged. upcase
works for German umlauts.

upcase (character -- 1lst) ascii.sf

If character is a lowercase letter, 1 st is the equivalent uppercase letter. Otherwise, 1st is
equal to character. upcase works for German umlauts.

update (--) block.sf
Mark the block buffer as modified by storing t rue in updated.

Note: update does not immediately cause a transfer to the block file.

updated (-- address -> flag) block.sf

address -> flagis the address of a cell containing a flag. The flag is t rue if and only if the
block stored in the block buffer has been modified.

user-input-device (-- terminal-input-stream)

terminal-input-stream is the predefined terminal input device.

user-output-device (-- terminal-output-stream)

terminal-output-stream is the predefined terminal output device.

StrongForth 3.1 Glossary: forth 178

value (complex "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve space for two floating-point numbers at a cell
aligned address in the data-space memory space and store complex at the address.

name 1s referred to as a value.
Execution: (-- x)

x is the content of the reserved space. The value of x is that given when name was created, until
the phrase to name is executed, causing a new value of x to be associated with name. x has the
same data type as was supplied to value.

value (double "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve two cells at a cell aligned address in the data-
space memory space and store double at the address.

name 1is referred to as a value.
Execution: (-- x)

x is the content of the reserved pair of cells. The value of x is that given when name was created,
until the phrase to name is executed, causing a new value of x to be associated with name. x has
the same data type as was supplied to value.

value (float "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve space for a floating-point number at a float aligned
address in the data-space memory space and store £1oat at the address.

name 1is referred to as a value.
Execution: (-- x)

x is the content of the reserved space. The value of x is that given when name was created, until
the phrase to name is executed, causing a new value of x to be associated with name. x has the
same data type as was supplied to value.

value (single "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve one cell at a cell aligned address in the data-
space memory space and store single at the address.

name 1is referred to as a value.
Execution: (-- x)

x is the content of the reserved cell. The value of x is that given when name was created, until the
phrase to name is executed, causing a new value of x to be associated with name. x has the
same data type as was supplied to value.

StrongForth 3.1 Glossary: forth 179

complex.sf

strongforth.sf

float.sf

strongforth.sf

value-definition (caddress -> character unsigned value-definition
-- 4 th)

Initialize value—-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update 1atest. Links will be removed when value-
definition is deleted. Assign value-definition a name given by the character string
caddress -> character unsignedandreturnitas 4 th.

value-definition is the constructor of the value-definition class.

value-definition (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type value-
definition.

variable (complex "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve space for two floating-point numbers at a cell
aligned address in the data-space memory space and store complex at the address.

name 1is referred to as a variable.
Execution: (-- address -> x)

address -> xis the address of the complex floating-point number. x has the same data type as
was supplied to variable.

variable (double "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve two cells at a cell aligned address in the data-
space memory space and store double at the address.

name is referred to as a variable.
Execution: (-- address -> x)

address -> xis the address of the reserved pair of cells. x has the same data type as was
supplied to variable.

variable (float "<spaces>name" --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve space for a floating-point number at a float aligned
address in the data-space memory space and store £ 1oat at the address.

name is referred to as a variable.
Execution: (-- address -> x)

address -> xis the address of the floating-point number. x has the same data type as was
supplied to variable.

variable (single "<spaces>name" --)

StrongForth 3.1 Glossary: forth 180

complex.sf

strongforth.sf

float.sf

strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve one cell at a cell aligned address in the data-
space memory space and store single at the address.

name 1is referred to as a variable.
Execution: (-- address -> x)

address -> xis the address of the reserved cell. x has the same data type as was supplied to
variable.

variables (complex unsigned "<spaces>name" --) complex.sf

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve space for unsigned complex floating-point
numbers at a cell aligned address in the data-space memory space and store complex in each
of them.

name is referred to as a variable.
Execution: (-- address -> x)

address -> xis the address of the first floating-point number. x has the same data type as was
supplied to variables.

variables (double unsigned '"<spaces>name" --) strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve two times unsigned cells at an aligned address
in the data-space memory space and store double in each pair of them.

name 1is referred to as a variable.
Execution: (-- address -> x)

address -> xis the address of the first pair of reserved cells. x has the same data type as was
supplied to variables.

variables (float unsigned "<spaces>name" --) float.sf

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve space for unsigned floating-point numbers at a
float aligned address in the data-space memory space and store £1oat in each of them.

name is referred to as a variable.
Execution: (-- address -> x)

address -> xis the address of the first floating-point number. x has the same data type as was
supplied to variables.

variables (single unsigned "<spaces>name" --) strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name with
the execution semantics defined below. Reserve unsigned cells at a cell aligned address in the
data-space memory space and store single in each of them.

name 1is referred to as a variable.

StrongForth 3.1 Glossary: forth 181

Execution: (-- address -> x)

address -> xis the address of the first reserved cell. x has the same data type as was supplied
to variables.

virtual (object-size "<spaces>name" -- 1lst)

Skip leading space delimiters. Parse name delimited by a space. Create a new definition for name
with the execution semantics defined below. 1st is ocbject-size. An ambiguous condition
exists if virtual is executed in compilation state.

Note that the new definition does have no stack effects by default. Stack effects have to be
specified separately. By providing a stack diagram phrase (... -- ...) immediately
following virtual and the definition name, the new definition is modified to incorporate stack
effects. An ambiguous condition exists if the stack diagram does not contain at least one input
parameter, or if the last input parameter is not a class.

name Execution: (... class -- ...)

Execute the definition whose token is stored in the virtual method table of c1ass, the last input
parameter of name. class is object or a direct or indirect subtype of object. The token is
stored in the virtual method table by a succeeding execution of is. name is called a virtual
method. An exception is thrown if name is executed before it is being assigned an execution
semantics by is.

virtual-definition (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type virtual-
definition.

virtual-definition (unsigned caddress -> character unsigned
virtual-definition -- 5 th)

Initialize virtual-definition by erasing all members. Establish a link to the previous
definition in the current vocabulary and update 1atest. Links will be removed when virtual-
definition is deleted. The first unsigned is the index of the new virtual method within the
virtual method table. Assign virtual-definition a name given by the character string
caddress -> character unsignedandreturnitas 5 th.

virtual-definition is the constructor of the virtual-definition class.

virtual-match-criterion (-- search-criterion)

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

flagis trueifdefinition is a virtual definition and the selected data type heap matches the
input parameter list of definition. The matching algorithm follows the rules of the StrongForth
data type system.

The selected data type heap depends on state, the attributes of definition and the value of
single:

StrongForth 3.1 Glossary: forth 182

strongforth.sf

strongforth.sf

single| state | attributes data type heap

false | false interpreter
false | false | immediate interpreter
false | false | execute-only | interpreter
false | false | compile-only | (no match)
false | true compiler

false | true | immediate interpreter
false | true execute-only | (no match)
false | true compile-only | interpreter

true false interpreter
true false | immediate interpreter
true false | execute-only | interpreter
true false | compile-only (no match)
true true compiler
true true immediate compiler
true true execute-only (no match)
true true compile-only compiler

Note: Provide search-criterion to search in order to find a virtual definition with
matching input parameters according to the rules of the StrongForth data type system.

vocabulary (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type
vocabulary.

vocabulary (vocabulary -- 1lst)
Make vocabulary an empty vocabulary and add it as the first item in the hidden vocabulary list.

vocabulary is the constructor of the vocabulary class.

vtable (data-type -- vtable) strongforth.sf

vtable is the address of the virtual method table of the object with the data type data-type,
or null if data-type is no object.

vtable (object -- vtable)

vtable is the address of the virtual method table of object.

vtable (stack-diagram -- 1lst)

When used in a stack diagram, specifies an input or output parameter with data type vtable.

vtable-criterion (-- search-criterion) strongforth.sf

search-criterion is the qualified token of a definition with the execution semantics as
specified below.

Execution: (definition single -- flag)

StrongForth 3.1 Glossary: forth 183

flagis true if and only if the virtual method table of definition is equal to the value of
single.

Note: Provide search-criterion to search in order to find a definition with a given name
that is an object of a specific class.

w/o (-- fam) strongforth.sf

famis a constant value for selecting the “write only” file access method when a file is created or
opened.

while (destination -- origin lst) compile-only strongforth.sf

Compilation: Create and initialize origin and save a copy of the compiler data type heap.
Append the runtime semantics given below to the current definition. 1st is equal to
destination. The semantics are incomplete until origin and 1st are resolved.

Runtime: (single --)

If single is zero, continue execution at the location specified by the resolution of origin.
Otherwise, continue execution.

within (address 1lst 1st -- flag)

Perform a comparison of a test value address with a lower limit 1st (second parameter) and an
upper limit 1 st (third parameter). £1ag is true if and only if either (lower limit < upper limit
and (lower limit <= test value and test value < upper limit)) or (lower limit > upper limit and (lower
limit <= test value or test value < upper limit)).

within (integer 1lst 1lst -- flag)

Perform a comparison of a test value integer with a lower limit 1st (second parameter) and an
upper limit 1 st (third parameter). £1ag is true if and only if either (lower limit < upper limit
and (lower limit <= test value and test value < upper limit)) or (lower limit > upper limit and (lower
limit <= test value or test value < upper limit)).

wordlist ("<spaces>name" --) strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. Create a new empty vocabulary
and add it as the first item in the hidden vocabulary list. Create a definition for name with the
execution semantics defined below. Store the new vocabulary in the data field of the new
definition.

name Execution: Remove the vocabulary from both the context vocabulary list and the hidden
vocabulary list. Make the vocabulary the head of the context vocabulary list. An ambiguous
condition exists if the vocabulary is not included in one of the two vocabulary lists.

words ("<spaces>name" --) strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. Send a list of all definitions in the
vocabulary at the head of the context vocabulary list, whose name are identical to name, to the
default output stream. If name is not provided, send a list of all definitions in the vocabulary at the

StrongForth 3.1 Glossary: forth 184

head of the context vocabulary list to the default output stream. Each definition occupies a separate
line of text.

write (caddress -> character unsigned file --)

Write unsigned characters from address caddress -> character to the file identified by
file starting at its current position. At the conclusion of the operation, position returns the
next file position after the last character written to the file, and size returns a value greater than or
equal to the value returned by position.

write-eol (file --)

Write a line terminator (carriage return and line feed) to the file identified by £1i 1e at its current
position. At the conclusion of the operation, position returns the next file position after the
second character written to the file, and size returns a value greater than or equal to the value
returned by position.

write-line (caddress -> character unsigned file --)

Write unsigned characters from address caddress -> character plus a line terminator
(carriage return and line feed) to the file identified by £i1e starting at its current position. At the
conclusion of the operation, position returns the next file position after the last character written
to the file, and size returns a value greater than or equal to the value returned by position.

xalign (--)

If the first unused address of the default memory space is not cell aligned, reserve the required
minimum number of address units to make it aligned.

xalign (memory-space --)

If the first unused address of memory-space is not cell aligned, reserve the required minimum
number of address units to make it aligned.

xaligned (address -- 1st)

1st is the lowest cell aligned address greater than or equal to address.

xor (data-type data-type -- 1lst)

Ist is the first data-type with attributes that are the bit-by-bit exclusive-or of the attributes of
both parameters data-type.

xor (single logical -- 1st)

1st is the bit-by-bit exclusive-or of single with 1ogical.

zero (--)

Send a zero character (0) to the default output stream.

StrongForth 3.1 Glossary: forth 185

strongforth.sf

complex.sf

complex.sf

complex.sf

strongforth.sf

zeros (integer --) strongforth.sf
If integer is greater than zero, send integer zero characters (0) to the default output stream.

Note: integer is assumed to be a signed number.

[(-——) immediate strongforth.sf
Interpretation: Stay in interpretation state.
Compilation: Perform the execution semantics given below.

Execution: Enter interpretation state.

['] ("<spaces>name" --) compile-only strongforth.sf

Compilation: Skip leading space delimiters. Parse name delimited by a space. Find name. Append
the runtime semantics given below to the current definition. An exception is thrown if name is not
found.

Runtime: (-- definition)

definition is the definition identified by name.

[bind] ("<spaces>name;<spaces>name," --) compile-only strongforth.sf

Compilation: Skip leading space delimiters. Parse name; delimited by a space. Skip spaces. Parse
name, delimited by a space. Find class name;. Find a virtual method name, that matches the
compiler data type heap according to the rules of the StrongForth data type system. If no such
virtual definition is found, compile this and try finding name, again. Append the runtime
semantics of the virtual definition name; that is bound to the class identified by name; to the
current definition. An exception is thrown if name; does not identify a class, if no suitable virtual
definition name; is found or if name, is not a virtual definition within the scope of the class
identified by name;.

[char] ("<spaces>name" --) compile-only strongforth.sf

Compilation: Skip leading space delimiters. Parse name delimited by a space. Append the runtime
semantics given below to the current definition.

Runtime: (-- character)

character is the value of the first character of name. If the length of name is zero,
character is the space character.

[compile] ("<spaces>name" --) compile-only

Skip leading space delimiters. Parse name delimited by a space. Search the context vocabularies
for a definition with the name name, whose input parameters match the compiler data type heap
according to the rules of the StrongForth data type system. Change the compiler data type heap
according to the stack effect of this definition. Append the semantics of the definition to the current
definition. An exception is thrown if no matching definition is found.

StrongForth 3.1 Glossary: forth 186

[ctrl] (--) compile-only ascii.sf

Compilation: Skip leading space delimiters. Parse name delimited by a space. An exception is
thrown if name's first character is not a lowercase or uppercase letter. Append the runtime
semantics given below to the current definition.

Runtime: (-- character)

character is the ASCII control character the keyboard generates when typing name's first
character while holding the CTRL key. If the length of name is zero, character is the null
character.

[defined] ("<spaces>name" -- flag) immediate strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. f1ag is true if and only if
name is the name of a definition that can be found by search-context.

[dt] ("<spaces>name" --) compile-only strongforth.sf

Compilation: Skip leading space delimiters. Parse name delimited by a space. Append the runtime
semantics given below to the current definition. An exception is thrown if name is not the name of
a data type.

Runtime: (—-- data-type)
Place data-type, the data type identified by name, on the stack.

[else] (--) immediate strongforth.sf
Compilation: Perform the execution semantics given below.

Execution: Skip leading spaces, parse and discard space-delimited words from the parse area,
including nested occurrences of [if] ... [then] and [if] ... [else] ... [then],
until [then] has been parsed and discarded. If the parse area becomes exhausted, it is refilled
with refill.

[1f] (single --) immediate strongforth.sf
Compilation: Perform the execution semantics given below.

Execution: If any bit of single is not zero, continue execution. Otherwise, skip leading spaces,
parse and discard space-delimited words from the parse area, including nested occurrences of
[if] ... [then]and [if] ... [else] ... [then], untileither [else] or
[then] has been parsed and discarded. If the parse area becomes exhausted, it is refilled with
refill.

An ambiguous condition exists if [1f] is postponed, or if the end of the input buffer is reached
and cannot be refilled before the terminating [else] or [then] is parsed.

[literal] (--) compile-only strongforth.sf
Compilation: Append the runtime semantics given below to the current definition.

Runtime: (x —--)

StrongForth 3.1 Glossary: forth 187

Allocate memory in the data-space memory space and save the compound data type of x in it.
Append the runtime semantics given below to the current definition.

Runtime: (-- x)

Place literal x on the stack. x has the same data type and the same value as those at compile time.

[parent] ("<spaces>name" --) compile-only strongforth.sf

Skip leading space delimiters. Pares name delimited by a space. Find a virtual definition name that
matches the compiler data type heap according to the rules of the StrongForth data type system. If
no such virtual definition is found, compile this and try finding name again. Append the runtime
semantics of the virtual definition name that is bound to the parent of the class currently being
defined to the current definition. An exception is thrown if no suitable virtual definition name is
found or if name is not a virtual definition within the scope of the parent of the class currently
being defined.

[then] (--) immediate strongforth.sf
Compilation: Perform the execution semantics given below.

Execution: Continue execution.

[undefined] ("<spaces>name" -- flag) immediate strongforth.sf

Skip leading space delimiters. Parse name delimited by a space. f1agis false if and only if
name is the name of a definition that can be found by search-context.

\ ("cece\" --) immediate strongforth.sf
Compilation: Perform the execution semantics given below.

Execution: Parse and discard ccc delimited by a \ (backslash), but at most until the end the parse
area. The number of characters in ccc may be zero to the number of characters in the parse area.

\" ("ccc<quote>" --) compile-only escape.sf

Parse ccc delimited by " (quote), using the translation rules below. Append the run-time
semantics given below to the current definition.

Translation rules: Characters are processed one at a time and appended to the compiled string. If
the character is a \ character it is processed by parsing and substituting one or more characters as
follows, where the character after the backslash is case sensitive:

Escape sequence | Substitution
\a <bel>

\b <bs>

\e <esc>

\f <ff>

\1 <lf>

\m <cr><1lf>
\n <cr><1lf>
\g " (quote)

\r <cr>

StrongForth 3.1 Glossary: forth 188

\t <ht>

\v <vt>
\xyy (see below)
\z <nul>

\xyy performs the following semantics: Parse two hexadecimal digits yy and return the resulting
two-digit ASCII code. An exception is thrown if \ x is not followed by two hexadecimal characters.

All other characters remain unchanged.
Runtime: ("ccc<quote>" -- caddress -> character unsigned)

caddress -> character unsigned is the translated string.

\" ("eccc<quote>" -- caddress -> character unsigned) escape.sf

Parse ccc delimited by " (quote), using the translation rules below.

Translation rules: Characters are processed one at a time and appended to the compiled string. If
the character is a \ character it is processed by parsing and substituting one or more characters as
follows, where the character after the backslash is case sensitive:

Escape sequence | Substitution
\a <bel>

\b <bs>

\e <esc>

\f <ff>

\1 <1f>

\m <cr><lf>
\n <cr><lf>
\g " (quote)
\r <cr>

\t <ht>

\v <vt>
\xyy (see below)
\z <nul>

All other characters remain unchanged.

\xyy performs the following semantics: Parse two hexadecimal digits yy and return the resulting
two-digit ASCII code. An exception is thrown if \ x is not followed by two hexadecimal characters.

caddress -> character unsigned is the translated string.

1] (--) strongforth.sf

Enter compilation state.

~ (complex complex float -- flag) complex.sf

If float is positive, f1lag is true if and only if the absolute value of the first complex minus
the second complex is less than float.

If float is zero, flag is true if and only if the first complex and the second complex are
exactly identical.

StrongForth 3.1 Glossary: forth 189

If float is negative, f1lag is true if the absolute value of the first complex minus the second
complex is less than the absolute value of f1oat times the sum of the absolute values of the first
complex and the second complex.

~ (float float float -- flag)

If the third f1oat is positive, f1ag is true if and only if the absolute value of the first f1oat
minus the second f1oat is less than the third f1oat.

If the third f1oat is zero, £1ag is true if and only if the first f1oat and the second float are
exactly identical.

If the third f1oat is negative, f1ag is true if the absolute value of the first f1oat minus the
second £loat is less than the absolute value of the third £1oat times the sum of the absolute
values of the first f1oat and the second float.

StrongForth 3.1 Glossary: forth 190

float.sf

