Introduction to StrongForth 3.1

Preface

This introduction to StrongForth has been written for those who already have collected some
experience with Forth.

The basic idea behind StrongForth is the wish to add strong static type checking to a Forth system.
Previous Forth systems and standards (including Forth 2012) were supposed to be fypeless or
untyped, which means they do not do any type checking at all. The interpreter and the compiler
generally accept any word to be applied to the operands on the data and return stack. This
behaviour grants total freedom to the programmer, but on the other side it is rather often a reason
for type errors, which frequently cause system crashes and other more or less strange behaviour
throughout the whole development phase.

StrongForth does not guarantee bug-free programs. It does not even grant the absence of crashes.
But type errors will be greatly reduced. Furthermore, since interpreter and compiler know about the
data types of the operands on the stack, they are able to chose the appropriate version of a word, if
the dictionary contains several words with the same name, but different input parameter types. This
is called operator overloading. As will be shown in this introduction, operator overloading allows a
much more comfortable way of programming. Additionally, it is no longer necessary for you to
invent individual names for words with the same semantics that are just applied to different data

types.

Of course, strong static typing has some drawbacks, which might keep traditional Forth
programmers from using it. First, it requires a higher degree of discipline, because the sources of
all words having stack-effects have to be provided with precise stack diagrams. Second, interpreter
and compiler will prohibit not only more or less dirty tricks, but sometimes also just unusual
operations. For example, adding a flag to an address is not possible, although it might seem useful
in some cases. And third, relying on a system that does all the type-checking itself, might lead to
more careless programming.

The advantages and disadvantages of strong static type checking have already been discussed in the
Forth community. The availability of StrongForth will certainly put more practical aspects into the
previously rather theoretical discussion, allowing you to simply try it out by yourself.

First Steps

Let's begin with a few examples out of the first chapter of Leo Brodie's famous textbook Starting
Forth:

15 spaces ok

When interpreting the number 15, the interpreter pushes this value on the stack and remembers that
it is a single-cell unsigned integer number. spaces is a word that requires an integer number as
the input parameter. Here's a possible definition of spaces:

spaces (unsigned --)
0 ?do space loop ;

Well, this is not really exciting. At a first look, the only more or less interesting thing about it is the
stack diagram. Standard Forth systems use (n --), which is nothing but a comment. In
StrongForth, it is interpreted source code, which compiles the stack diagram of spaces into the

Introduction to StrongForth 3.1 1

dictionary. Additionally, it tells the compiler that the definition starts with an item of data type
unsigned on the stack, and that it is expected to remove this item on exiting. Generally, each
word in the dictionary includes full information about its stack effect.

So, let us now try a second example:
42 emit * ok

emit is a word that expects a number on the stack and displays the ASCII character associated
with this number. We can also write

char * emit * ok

instead, because a character is some kind of a number. Even the following code works well:
char * . * ok

But wait ... Isn't . supposed to display a number, and not a character? Let's see:

42 . 42 ok

Yes, this still works. But how does . know whether it should print a number or an ASCII
character? StrongForth actually provides more than one version of .. There are two version for
displaying signed and unsigned numbers, and there's one version for displaying characters. The
interpreter and the compiler take care of selecting the version that is suited best for the purpose. In
this case, a number is displayed as a number, and a character is displayed as a character. When we
write 42, the interpreter pushes 42 onto the stack and keeps in mind that this is an unsigned
number. When we write char *, the interpreter pushes exactly the same value onto the stack, but
this time it takes a note that the item on top of the stack is a character. This note allows the
interpreter to select the correct version of .. emit doesn't make this difference. It displays each
and every parameter as an ASCII character.

There are several other versions of . in StrongForth's dictionary. Just have a look at these:

3 4 = ., false ok
-16 . -16 ok

In this example, = takes the two items of data type unsigned and returns an item of data type
flag. A dedicated version of . for flags delivers the appropriate result. The second example
seems to be straight-forward, but it is not. Remember that 15, 42, 3 and 4 produced items of data
type unsigned. -16 produces an item of data type signed, and the interpreter finds a version
of . suited for signed numbers. To enter a positive signed number, you have to precede it with a
sign, for example +1 6. The advantage of distinguishing between signed and unsigned numeric
literals becomes obvious when we try larger numbers:

4200000000 . 4200000000 ok
+4200000000 . -94967296 ok

A standard 32-bit Forth system would always display -94967296, because it can not distinguish
signed and unsigned numbers.

With the knowledge obtained so far, let's try out the compiler, still sticking to the examples in Leo
Brodie's Starting Forth:

Introduction to StrongForth 3.1

star [char] * . ; ok
star * ok
cr
ok

cr star cr star cr star
*

*
* ok

stars 0 do star loop ;
(do) ? undefined word
unsigned

Oops. What's that? do tried to compile (do), which expects two numbers of the same data type on
the stack, but there was only one. Thus, the compiler could not find an appropriate version of (do)
in the dictionary, and throws an exception. Yes, we have to supply a stack diagram to stars:

stars (unsigned --) 0 do star loop ; ok
5 stars ****x* ok
stars
stars ? undefined word

So, the compiler starts with an unsigned number on the stack, adds another one (0), and now
(do) gets its input parameters. The last line just shows that stars will itself not be found in the
dictionary, if the stack is empty.

Finally, let's complete Leo Brodie's example:

margin cr 30 spaces ; ok

blip margin star ; ok

bar margin 5 stars ; ok

f bar blip bar blip blip cr ; ok
f

* Kk Kk kK
*

* k kx k%
ok

Data Types

In the previous section, we have introduced four data types: unsigned, signed, character,
and flag. Actually, StrongForth knows a lot more data types, and it is even possible to define
new, application-specific data types.

Data Type Structure

Having several different data types is certainly useful, but a large, unstructured quantity of data
types would cause more problems than it solves. Since it should be possible to apply words like
dup and drop to every data type, it would be necessary to supply separate versions of these words
for each of them. Words with two input parameters, like swap, would have to be defined for each
possible combination of two data types, which makes already 400 versions for 20 data types! rot
would be even worse. And StrongForth provides far more than 20 different data types.

To solve this problem, StrongForth arranges all data types in a hierarchical structure. There are
three data types at the root of this hierarchy: single, double, and f1oat. All other data types

Introduction to StrongForth 3.1 3

are direct or indirect subtypes of these three so-called anchestor data types. Here is an extract of
StrongForth’s data type structure:

single
integer
unsigned
signed
character
address
caddress
sfaddress
dfaddress
logical
flag
token
file
object
stack-diagram
input-stream
terminal-input-stream
string-input-stream
file-input-stream
output-stream
terminal-output-stream
string-output-stream
file-output-stream
control-flow
origin
destination
exception-frame
memory-space
data-type-attributes
class-attributes
definition
code-definition
colon-definition
created-definition
single-definition
double-definition
float-definition
deferred-definition
vocabulary
double
integer-double
unsigned-double
number-double
signed-double
data-type
float

Whenever the interpreter or the compiler tries to find a word in the dictionary, it accepts not only a
word whose input parameters match the data types of the items on the stack exactly, but also a
word whose input parameters are parents, grandparents or any other predecessors of those. Thus,
only three versions of dup and drop cover all data types: one for single, one for double, and
one for f1oat. If, for example, the item on top of the stack has data type unsigned, dup for

Introduction to StrongForth 3.1

single would match, because unsigned is a grandchild of single. Similarly, swap is
overloaded nine times in order to deal with all combinations of single, double and float,
including all direct and indirect subtypes, of both input parameters. rot even needs 27 overloaded
versions. 27 seems to be quite a lot, but remember that only three of them, ROT, 2ROT and FROT,
are specified in Forth 2012. Actually, rot is one of very few words in StrongForth having more
than ten different overloaded versions.

Do you see the advantage of this concept? In order to swap two items on the stack, you just have to
write swap, no matter whether those items were single-cell items, double-cell items, floating-point
numbers or any combination of those. In Forth 2012, you have to write rot for swapping a single-
cell and a double-cell item, or rot rot if you want to swap a double-cell and a single-cell item.
That’s not intuitive, is it?

Integers

Now, let's have a closer look at the data type structure. Some of the data types seem familiar to
those explicitly specified in Forth 2012: unsignedis u, signedis n and character is char.
These three data types are children of data type integer, which is itself is a child of single.
integer is rarely used explicitly, but it is most useful as a common parent to the three data types.
For example,

allot (integer --)
or
spaces (integer --)

can be applied to items of data types signed, unsigned and character, without having to
define separate versions. But note that these two words may not be directly applied to addresses or
flags, because that makes no sense. You might disagree, claiming that applying allot to a flag
might be useful in certain applications. However, this would definitely be a programming trick, and
it would be much clearer code writing

if -1 allot then

instead, although it is less efficient. If you want to keep this kind of efficiency in StrongForth,
you’d have to use a type cast, which reveals the fact that it’s a programming trick:

cast integer allot

Addresses

An address is not the same as an integer, because an address may not be added to another
address. Two addresses may, however, be subtracted, giving an integer. There are several other
restrictions regarding address arithmetic, like multiplication, but also some special features that
only apply to addresses.

One of many Forth 2012 words returning an address is base:

decimal base @ . 10 ok

Okay, that works as expected. But how does @ know that the address on top of the stack is the
address of an unsigned single-cell number? Obviously, the interpreter choses the correct version of
. to display an unsigned number. Let's try something else:

state @ . false ok

Same question: How does @ know ... ? The easiest way to get an answer is to get acquainted with
StrongForth's version of . s:

45 -3 true char B .s unsigned signed flag character ok

Introduction to StrongForth 3.1 5

Surprise, surprise! Instead of displaying the data values, . s shows the data types of the items on
the stack. Well, what else did you expect from a strongly typed system? The information on data
types is in many cases more useful than the actual numerical values. Now things are getting
exciting:

abort \ clean stack
base .s caddress -> unsigned ok

What does that mean? unsigned, flag, character and so on are so-called basic data types.
caddress -> unsigned is a compound data type, meaning an address pointing to an
unsigned character-size number. Addresses have to be specific in the sense that addresses to
different data types have to be distinguishable. caddress, which is a subtype of address, has
the same meaning as caddr in Forth 2012: Whatever is stored at this address has the size of a
character instead of the size of a cell. As you’ve seen, that is not necessarily a character. Anything
that fits into 8 bits, like unsigned numbers between 0 and 255, signed numbers between -128 and
+127, or flags, can be stored into a character-size memory location. Overloaded versions of @ and
!, that apply to addresses of data type caddress, have the semantics of C@ and C! as specified
by Forth 2012. The rest is easy to understand:

@ .s unsigned ok
. 10 ok

When @ is supplied with an item of data type caddress -> unsigned, the interpreter finds an
overloaded version which knows that it has to fetch an unsigned character-size number from
memory and return it as unsigned. Other overloaded versions of @ for data types caddress -
> signed and caddress -> flag even perform proper sign extension.

Naturally, caddress is mostly used for dealing with character strings in memory. Here’s an
example of how to use pad, which actually returns the address of a character string buffer:

char F pad ! ok

char o pad 1+ ! ok

char r pad 2 + ! ok

char t pad 3 + ! ok

char h pad 4 + ! ok

pad .s caddress -> character ok

5 type Forth ok

Now, what about variables? A Forth 2012 variable can store anything from a signed number to an
execution token. In StrongForth, the word variable has to be supplied with information about
the data type that is supposed to be stored in it. This information can easily be provided by doing a
small modification to the semantics of variable. In StrongForth, variable initializes the just
created variable with the value of the item on top of the stack, while simultaneously taking over its
data type:

char C variable x ok
X .8 @ . address -> character C ok

An item to be stored into a variable must always have exactly the same data type as the one with
which the variable had been initialized:

char D x ! ok

X @ . D ok

-13 x !

-13 x ! ? undefined word

signed address -> character

Introduction to StrongForth 3.1 6

The error message means that the interpreter cannot find a word with the name ! that accepts the
two input parameters signed and data —-> character. Note that the second line of an error
message always displays the data types of the items on the stack at the time the error was detected.

To show how powerful the concept of compound data types is, let's continue playing with
variables:

x variable y ok
y .s address -> address -> character ok
@ .s address -> character ok
@ .s character ok
D ok

Thus, a compound data type can consist of an arbitrary number of basic data types chained by —>.
It is therefore possible to store addresses of specific items in variables and generally operate with
addresses of addresses of addresses and so on.

Logicals

An item of data type 1ogical is a collection of individual bits in a single cell. Naturally, such
items may not be involved in arithmetic operations like +, —, *, / or negate. On the other hand,
logical operations like and, or, xor and invert may only be applied if the top item on the stack
is of data type logical:

hex 12345678 55AA55AA or

hex 12345678 55AA55AA or ? undefined word

unsigned unsigned

hex 12345678 55AA55AA cast logical or . 57BELST7FA ok

cast logical is aso-called fype cast, which converts an item of any data type into an item of
data type 1ogical without affecting its bit pattern. You can cast any data type to any other data
type:

decimal ok

char X .s character ok

cast unsigned .s . unsigned 88 ok

Performing a logical operation on an integer is not necessarily dangerous, but you have to pay
attention, because it is almost always a programming trick. StrongForth helps detecting
programming tricks, because it requires type casts whenever you do something unusual. For
example, one might decide to multiply a number by a power of 2 using 1shift:

1000 6 1lshift
1000 6 1lshift ? undefined word
unsigned unsigned

This does not work, because 1shift is a logical operation that expects an item of data type
logical on the stack:

1000 cast logical 6 1lshift cast unsigned . 64000 ok
That looks rather awful. The code is certainly more readable with a pure arithmetic operation:

1000 64 * . 64000 ok

However, StrongForth’s optimized compiler would actually compile a left shift instead of a
multiply instruction if the number 64 is already known at compile time.

Data type f1ag is a subtype of 1ogical. This ensures that all logical operations can directly be
applied to flags, i. e., without the ugly type casts. A flag is just a 1ogical with all bits set to the
same value. The constants t rue and false both have data type f1ag:

Introduction to StrongForth 3.1 7

true .s . flag true ok
false .s . flag false ok

Tokens

Items of data type token are actually execution tokens, which are abbreviated with xt in Forth
2012. This data type is a direct subtype of single, in order to prevent any operations other than
the few allowed ones to be applied to execution tokens.

Files

Data type £ile is used for file handles. It is directly derived from data type single, because this
excludes arithmetic and logical operations to be applied to file handles. File handles are typically
created with either open or close. Note that the names of these two words have been shortened
with respect to Forth 2012. Thanks to the overloading mechanism in StrongForth, it is not
necessary to give different Forth 2012 words like create and create-£file unique names.
This applies to other words from the File-Access word set as well, because most of them expect an
input parameter of data type £11e, which ensures that the correct overloaded version is chosen by
the interpreter.

Objects

StrongForth is object-oriented. One of the data types directly derived from data type single is
object, which has in turn quite a number of subtypes. In contrast to simple data types like
integer, address, logical, token and £ile, each object belongs to a class. Each class
has a virtual method table, constructors and destructors. It may have class members as well as
private and protected definitions that are only visible within the context of the definition of the
class.

What is called a word in Forth 2012, is in StrongForth an object of class definition. The
members of a definition are its name, a link to the previous definition, its stack diagram, and other
attributes. You can obtain its execution token or a pointer to its data space, and compile or execute
it. An item of data type definition, or one of its subtypes, will be produced by words like '
and :noname. Other than in Forth 2012, ' and : noname do not return execution tokens. The
most important reason is that an execution token cannot directly be executed in StrongForth,
because it bears no information about the stack diagram of the definition associated with it.

More information about this subject will be supplied in connection with a detailed explanation of
execute in the StrongForth Reference manual. For now, the most interesting thing about
definition is, that StrongForth provides another overloaded version of . for it. No, this is not
the StrongForth synonym for see, but it displays the name and the complete stack diagram of a
definition. Here are some examples:

' here . here (-- address) ok
' name . name (definition -- caddress -> character unsigned) ok
' >body . >body (definition -- address) ok

Input and output streams are objects as well. Instead of Forth 2012’s complicated rules for selecting
the input source, StrongForth just parses the default input stream, which may be the console, a
character string, a file, a block or anything else. emit and type display characters on the default
output stream. Dedicated words for writing to character strings, files and blocks are superfluous.

Class vocabulary covers Forth 2012 word lists. But a vocabulary can be more than a word list.
It rather implements a description of how certain names are composed, for example, integer and
floating-point numbers. You can define a new vocabulary that consults an external file or the
Internet to find out whether a name is valid and how to compile it. You can define a vocabulary

Introduction to StrongForth 3.1 8

that recognizes and compiles octal numbers, fixed-point decimal numbers or arbitrary-length
numbers.

Other predefined classes are stack-diagram, control-flow, exception-frame,
memory-space and data-type-attributes. And of course, you can define your own
classes and create objects from them.

Double-cell Data Types

All members of the doub1le branch of the data type structure occupy two cells in memory. This is
not new to Forth. The big difference between StrongForth and Forth 2012 regarding double
numbers is the fact, that Forth 2012 requires special names for those words that deal with double
numbers, while StrongForth simply overloads the corresponding single number words. To
duplicate two double numbers, one has to write 2DUP in Forth 2012 and dup in StrongForth.
Adding two double numbers is done with D+ in Forth 2012 and + in StrongForth, as can be seen in
this example:

1000000000000. dup + . 2000000000000 ok

. is overloaded as well. Overloading makes programming a lot easier. Actually, the complete
StrongForth Double-Number word set consists of overloaded words. Since interpreter and compiler
know about the data types of the items on the stack, they will always select the proper words.

In analogy to single numbers, StrongForth provides the predefined data types integer-double,
signed-double and unsigned-double. The number 1000000000000 . in the above
example is unsigned-double. When prefixed with a positive or negative sign, it will be
interpreted as signed-double.

A new data type is number—-double. It is only used between <# and #>, i. e., <# creates an item
of this data type, while #> consumes it:

<# (unsigned-double -- number-double)
#> (number-double - caddress -> character unsigned)

This is an easy way to ensure that these two words are always paired. Since # and #s also work
with items of data type number-double, syntax violations will immediately be detected by the
compiler. As an example, here is a possible definition of . for signed double numbers:

(signed-double --)
dup 0< swap abs <# #s swap sign #> type space ;

Note that the first four words being compiled are overloaded versions for double-cell numbers, and
that sign, other than in Forth 2012, requires an item of data type signed-double as its input
parameter.

Using a special data type for ensuring the proper syntax is a common technique in StrongForth.
The subtypes of data type control-f1low, which is a class and a subtype of object, are other
examples. An object of data type origin is created by i £ and consumed by then. begin
creates an object of data type destination, which is later consumed by until or repeat.
else and while may be used in exactly the same way as specified in Forth 2012. origin and
destination have themselves subtypes, which are not shown in the extract of the data type
structure at the beginning of this section. Objects of these data types are used between case and
endcase, and between do/?do and 1loop/+1loop.

Another subtype of double is data-type. An item of data type data-type is, well, a data
type. Words using a data type as input or output parameters are extensively used by the interpreter
and the compiler. For example, specifying a data type within a stack diagram adds it to the stack
diagram as an input or output parameter. An item of data type data-type is actually composed

Introduction to StrongForth 3.1 9

of an identifier and a set of attributes. Data type attributes include information about whether a data
type as part of a stack diagram references another data type and whether it is part of a compound
data type. Data types can be created with dt in the same way as character literals are created with
char. There’s even an overloaded version of . for items of data type data-type:

dt signed-double .s . data-type signed-double ok

Stack Diagrams

When experimenting with displaying stack diagrams by using . for definitions, you might have
found out that ' always finds the most recent definition in the dictionary that matches the given
name. Since many StrongForth words are overloaded, there often exist multiple occurences of a
name in the dictionary. This is a major difference to Forth 2012. You can use words for finding all
overloaded versions of a name:

words .
(float --)
(vocabulary --)
(definition --)
(data-type --)
(character --)
(flag --)
(signed --)
(single --)
(signed-double --)
(double --) ok

Trying words out with other names, you will almost certainly run into rather strange stack
diagrams that look like these:

words dup

dup (float -- 1st 1st)
dup (double -- 1st 1st)
dup (single -- 1st 1st) ok

Looking again at the data type structure, you'll find out that 1st is not one of the predefined data
types, neither is 2nd, 3rd and th in the following examples:

' >number . >number (integer-double caddress -> character
unsigned -- 1lst 2nd 4 th) ok

words accept

accept (caddress -> character integer -- 3rd) ok

These words obviously have a special meaning. Let's assume we define xdup as follows and try it
out on an unsigned single number:

xdup (single -- single single) dup ; ok
4 xdup .s single single ok
drop drop ok

Now we have two items of data type single on the stack instead of two items of data type
unsigned. Trying, for example, to add those two items will fail, because + is only defined on
data types integer and address, including subtypes, but not on data type single. That's why
we have to use 1st in the stack diagram of dup. When interpreting or compiling a word with 1st
as an output parameter, the data type of this parameter will be replaced with the data type of the
first actual input parameter:

Introduction to StrongForth 3.1 10

4 dup .s . . unsigned unsigned 4 4 ok

char 7 dup .s . . character character jj ok

base dup .s . . caddress -> unsigned caddress -> unsigned 4300813
4300813 ok

Now it works as expected. As can be seen in the last line of the example, 1 st also works correctly
if the first input parameter has a compound data type. 2nd and 3rd work in a similar way, but
reference the second or third basic data type in the input parameter list, respectively. To reference
the fourth, fifth, sixth basic data type and so on, an unsigned number followed by th has to be
used, as in the stack diagram of >number. This feature is perhaps one of most important keys to
strong static typing in StrongForth. Many words use 1st, 2nd, 3rd and th in their stack
diagrams.

You might have noticed a small but important detail in the explanation of 2nd, 3rd and th. They
do not reference the second (or third ...) input parameter, but the second (or third ...) basic data
type in the input parameter list of a stack diagram. The necessity for making this difference
becomes clear when having a closer look at the stack diagrams of @:

words (@

@ (dfaddress -> float -- 2nd)

@ (sfaddress -> float -- 2nd)

@ (caddress -> flag -- 2nd)

@ (caddress -> signed -- 2nd)

@ (caddress -> single -- 2nd)

@ (address -> float -- 2nd)

@ (address -> double -- 2nd)

@ (address -> single -- 2nd) ok

Let's only look at the last line of this list. Although @ has only one input parameter, 2nd references
single, or, more generally, the tail of the compound data type standing for the first input
parameter. Thus, when @ is applied to the address of an unsigned single number, the data type of
the output parameter is really that of an unsigned single number. As has been shown in the previous
examples with variable x and variable v, it works as expected even if the tail of the
referenced input parameter is itself a compound data type.

Another good example is >number, because this word has quite a lot of parameters:

>number (integer-double caddress -> character unsigned -- 1st 2nd
4 th)

The first input parameter has the data type integer—-double, the second one has the data type
caddress -> character and the third one has the data type unsigned. Only the second
input parameter has a compound data type. When the input parameter list is decomposed into basic
data types, we get:

1. integer-double
2. caddress

3. character

4. unsigned

1st references the first basic data type, which is integer—-double and nothing else. 2nd
references caddress. But since the basic data type caddress in this input parameter list is the
head of a compound data type, 2nd actually references the whole compound data type, namely
caddress -> character. 3rd would reference the third basic data type, character,
which is the tail of the second input parameter. Finally, 4 th references unsigned. unsigned
is both the third input parameter and the fourth basic data type within the input parameter list.

Introduction to StrongForth 3.1 11

Now it should be clear how several other words are defined. Have a look at the common arithmetic
operators. As a general rule, the data type of the output parameter is the same as that of the first
input parameter, thus allowing, for example, adding an integer to a character and still having a
character on the stack afterwards. This should answer the question, why + is not defined as

+ (integer integer -- integer) \ wrong!
but as
+ (integer integer -- 1lst)

The most common application for data type references is in the output parameter list of stack
diagrams. But data type references may also be used in the input parameter list, where they have a
slightly different meaning. Look at the stack diagrams of the various overloaded versions of !:

words !

' (float dfaddress -> 1lst —--)
' (float sfaddress -> 1lst —--)
! (single caddress -> 1st --)
' (float address -> 1lst —--)
oo
oo

double address -> 1st --)
single address -> 1lst --) ok

Don’t bother about what kind of data types dfaddress and sfaddress are. It's only the last
line we shall investigate. 1 st means here, that the second input parameter is an address, which
points to an item of exactly the same data type as the first input parameter. This is actually a
restriction to the interpreter or compiler when trying to find a suitable version of ! in the
dictionary. It prevents you from trying to store something into a memory address that doesn't
belong there. A simple example should clarify what this means:

char ¢ variable x ok

char d x .s character address -> character ok
ok

4 x .s unsigned address -> character ok

== w]—=

? undefined word
unsigned address -> character

The second ! fails to match, because an unsigned single number may not be stored into a character
variable.

Data Type Heaps

To keep track of the data types of the items on the stack, StrongForth has two data type heaps. Why
two? Because StrongForth needs separate data type heaps for the interpreter and for the compiler.

The contents of the interpreter's data type heap can be displayed with . s. The items on the data
type heap are mapped one to one to the items on the stack. If we have three items on the stack, we
also have three data types on the data type heap, which can be either basic or compound data types.

The interpreter's data type heap is only used by the interpreter. There is no explicit type checking at
runtime, because this would cause a tremendous performance penalty. That's the main difference
between systems with static and dynamic type checking. Instead of doing dynamic type checking at
runtime, StrongForth's compiler does static type checking at compile time. The compiler has its
own data type heap, where it keeps the data types of the items that will be on the stack at runtime.

Since the interpreter is permanently present during compilation, having two separate data type
heaps is a necessity. Immediate words generally use the interpreter data type heap, because they are

Introduction to StrongForth 3.1 12

immediately executed. All other words are compiled, and use the compiler data type heap. Let's
view an example:

test 3 4 .s unsigned unsigned
+ .s unsigned

.S
5 ok

. s is an immediate word. In interpretation state, it displays the contents of the interpreter data type
heap. In compilation state, it displays the contents of the compiler data type heap, as in this
example. After having compiled two numeric literals, the compiler data type heap contains two
times the data type unsigned. + is not immediate. The compiler finds a version of + that accepts
two unsigned single numbers, and compiles it. It also updates the compiler data type heap by
replacing the data types corresponding to the input parameters of + with the data type that
corresponds to +'s output parameter, which is unsigned. . is also non-immediate. The compiler
finds a version suitable for an unsigned single number and removes the data type of its input
parameter from the compiler data type heap. Since . has no output parameters, the compiler data
type heap is now left empty. ; is immediate. Before compiling exit, it ensures that the contents of
the compiler data type heap matches the assumed output parameter list of test. Both are empty,
so everything is fine.

Here's a second example:

counter (unsigned --) 0 do i . loop ; 0k
10 counter 01 2 3456 7 8 9 ok

By default, a new definition is assumed to have no stack effect. This time, we have specified an
explicit stack diagram.) initializes the compiler data type heap with one item of data type
unsigned, so compilation starts with this item. Compiling 0 adds another unsigned, and do,
an immediate word, consumes both by compiling (do) . i pushes unsigned on the data type
heap, and . consumes it. 1oop checks that the contents of the compiler data type heap is the same
as it was after do was executed, before compiling its own runtime semantics. Finally, ; checks the
congruence between the compiler data type heap and the output parameter list of counter.

That's what happens on the compiler data type heap. But what about the interpreter data type heap?
We can easily watch it with . s by temporarily switching to interpretation state:

counter [.s] colon-definition
(unsigned --) [.s] colon-definition
0 do [.s] colon-definition do-destination
i loop [.s] colon-definition
; ok

colon-definition, which : pushes onto the interpreter data type heap, is the equivalent of
what the Forth 2012 standard calls colon-sys. It identifies the current definition. do pushes another
item onto the data stack and the interpreter data type heap, which is supposed to contain
information for 1oop or +1oop. do-destination is consumed by 1oop, and ; consumes
colon-definition. If we had tried to execute ; before 1oop, the interpreter would not have
found it in the dictionary, because ; requires its input parameter colon—-definition to be on
top of the stack.

The Native-code Compiler

StrongForth’s compiler creates native machine code instead of lists of tokens for a virtual machine.
That makes the generated code fast. The code gets even faster, because the compiler adds some

Introduction to StrongForth 3.1 13

sophisticated optimizations. And it becomes really fast because Strongforth does not even need a
physical data stack.

A Forth without a data stack? Yes, that really works. StrongForth does not need a memory area
used as the data stack, and there’s no data stack pointer. All data you expect to be on the data stack
are stored in the processor’s general-purpose registers. But wait ... the underlying 32-bit x86
architecture has only six 32-bit registers: EAX, EBX, ECX, EDX, ESI and EDI. Doesn’t that mean
StrongForth’s data stack is only six cells deep? No. The only restriction is that no word is allowed
to have more than six cells of input parameters and six cells of output parameters. The only Forth
2012 words that fully use up these six cells are 2ROT and TIME&DATE. Do you consider a word
expecting more than six cells on the stack or producing more than six cells consider useful? At
least, it should be possible to factor it out in some way.

So, where does StrongForth store the data that do not fit into registers? Of course, they ar pushed
onto the return stack. The fact that these cells are inaccessible during the execution of a word,
because the return address (nest-sys called in Forth 2012) is also stored on return stack, does not
matter at all. Once the word currently being executed returns to its caller, the data stored on the
return stack becomes available again. If the next word to be executed expects these data in certain
registers, all required cells will be popped from the return stack.

The assignment between stack cells and registers may vary. As a consequence, words that only
move or copy data on the stack do in most cases not compile any code at all. The compiler just
changes the assignments. For example, let’s assume the top cell of the data stack (TOS) is stored in
register EAX and the next cell (NOS) is stored in register EBX. Now, if swap is being compiled,
the compiler just reassigns the registers: EAX now contains NOS and EBX contains TOS. No
machine code needs to be compiled. Here’s an example:

-rot (single single single -- 3rd 1st 2nd) rot rot ; ok
see -rot
code -rot (ecx: single edx: single eax: single -- eax: 3rd ecx:

1st edx: 2nd)
00428973: ret,
endcode ok

The only machine code instruction compiled is ret, . In the stack diagram, the input and output
parameters are preceeded by the names of the registers they occupy. It’s easy to see how —rot just
changes the assignments in order to implement its semantics.

Let’s view a more complex example:

.byte (single --)
base @ hex swap s>d <# # # #> type base ! ;
see .byte
code .byte (eax: single -- eax: ecx: edx: ebx: changed)

0042B49F: ecx 0041D0O0D byte[] movzx,
0042B4A6: 0041D00D bytel[] 10 mov,
0042B4AD: edx edx xor,

0042B4AF: 00422B46 call, <#
0042B4B4: ecx push,

0042B4B5: 00422C4B call, #
0042B4BA: 00422C4B call, #
0042B4BF: 00422B4E call, #>
0042B4C4: 00406AAC call, type
0042B4C9: ecx pop,

0042B4CA: 0041D00D byte[] cl mov,
0042B4D0: ret,

endcode ok

Introduction to StrongForth 3.1 14

.byte types the least significant byte of single in a two-digit hexadecimal format with no
trailing space. base @ is compiled into only one machine code instruction. Remember that the
variable base resides in a character-size memory location. swap compiles to nothing, s>d clears
register edx, so the register pair eax/edx now contains a double-cell number.

<# # # #> type is compiled into a sequence of four subroutine calls. Register ecx, which
holds the original value of base, needs to be saved to and restored from the return stack, because
its contents is destroyed by # and #>. In the stack diagram of .byte, as it is displayed by see,
you can see which registers are being destroyed by . byte itself. This information is included in
the attributes of each definition, so that the compiler knows which registers need to be saved before
it compiles the definition.

The last example in this section checks whether an item of data type £1ag assumes only the
allowed values:

?bounds (flag -- 1lst)
dup if dup true <> if -289 throw then then ;
see ?bounds
code ?bounds (ecx: flag -- ecx: 1st eax: changed)
0042B4D1: ecx ecx test,
0042B4D3: 0042B4E4 7z,
0042B4D5: ecx -01 cmp,
0042B4D8: 0042B4E4 7z,
0042B4DA: eax FFFFFEDF mov,
0042B4DF: 00407B4F call, throw
0042B4E4: ret,

endcode ok

The fact that the compiler knows the stack diagram of each word it compiles and which registers
are used allows a number of optimizations not possible in other Forth systems. Replacing the data
stack with the small set of general-purpose registers works fine, unless you need to handle more
than six cells of input or output parameters.

When composing the stack diagram of a new word, StrongForth heuristically assigns registers to
input parameters in such a way that these assignments most likely fit to what other words expect or
return. Each data type has a default register, which is preferably used. E. g., the default register for
addresses is ebx, for unsigned number and logicals including flags it is ecx. Double numbers are
assigned to register pairs eax/edx, ebx/ecx or esi/edi.

A colon definition usually expects its parameters in specific registers, as can be seen in the above
examples. However, the input parameters of some frequently used, precompiled words need not be
in specific registers. Among these words are not only move and copy words like dup, drop and
swap, but also @, ! and many arithmetical and logical operations. When compiling those words,
the compiler saves explicit register shuffling in cases where the register assignments otherwise
would not perfectly fit. Actually, this technique helps a lot in optimizing the generated code.

-rot as defined above would certainly be another candidate for such a technique. However,
there’s an even simpler way to accomplish the task:

-rot (--) postpone rot postpone rot ; immediate

This version covers all combinations of input parameters in one word, does not compile a
subroutine call, and automatically uses all compiler optimizations StrongForth provides.

Introduction to StrongForth 3.1 15

