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Introduction to StrongForth 3.1 

Preface 

This introduction to StrongForth has been written for those who already have collected some 
experience with Forth. 

The basic idea behind StrongForth is the wish to add strong static type checking to a Forth system. 
Previous Forth systems and standards (including Forth 2012) were supposed to be typeless or 
untyped, which means they do not do any type checking at all. The interpreter and the compiler 
generally accept any word to be applied to the operands on the data and return stack. This 
behaviour grants total freedom to the programmer, but on the other side it is rather often a reason 
for type errors, which frequently cause system crashes and other more or less strange behaviour 
throughout the whole development phase. 

StrongForth does not guarantee bug-free programs. It does not even grant the absence of crashes. 
But type errors will be greatly reduced. Furthermore, since interpreter and compiler know about the 
data types of the operands on the stack, they are able to chose the appropriate version of a word, if 
the dictionary contains several words with the same name, but different input parameter types. This 
is called operator overloading. As will be shown in this introduction, operator overloading allows a 
much more comfortable way of programming. Additionally, it is no longer necessary for you to 
invent individual names for words with the same semantics that are just applied to different data 
types. 

Of course, strong static typing has some drawbacks, which might keep traditional Forth 
programmers from using it. First, it requires a higher degree of discipline, because the sources of 
all words having stack-effects have to be provided with precise stack diagrams. Second, interpreter 
and compiler will prohibit not only more or less dirty tricks, but sometimes also just unusual 
operations. For example, adding a flag to an address is not possible, although it might seem useful 
in some cases. And third, relying on a system that does all the type-checking itself, might lead to 
more careless programming. 

The advantages and disadvantages of strong static type checking have already been discussed in the 
Forth community. The availability of StrongForth will certainly put more practical aspects into the 
previously rather theoretical discussion, allowing you to simply try it out by yourself. 

First Steps 

Let's begin with a few examples out of the first chapter of Leo Brodie's famous textbook Starting 
Forth: 

15 spaces                 ok 

When interpreting the number 15, the interpreter pushes this value on the stack and remembers that 
it is a single-cell unsigned integer number. spaces is a word that requires an integer number as 
the input parameter. Here's a possible definition of spaces: 

: spaces ( unsigned -- ) 
  0 ?do space loop ; 

Well, this is not really exciting. At a first look, the only more or less interesting thing about it is the 
stack diagram. Standard Forth systems use ( n -- ), which is nothing but a comment. In 
StrongForth, it is interpreted source code, which compiles the stack diagram of spaces into the 
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dictionary. Additionally, it tells the compiler that the definition starts with an item of data type 
unsigned on the stack, and that it is expected to remove this item on exiting. Generally, each 
word in the dictionary includes full information about its stack effect. 

So, let us now try a second example: 

42 emit * ok 

emit is a word that expects a number on the stack and displays the ASCII character associated 
with this number. We can also write 

char * emit * ok 

instead, because a character is some kind of a number. Even the following code works well: 

char * . * ok 

But wait ... Isn't . supposed to display a number, and not a character? Let's see: 

42 . 42  ok 

Yes, this still works. But how does . know whether it should print a number or an ASCII 
character? StrongForth actually provides more than one version of .. There are two version for 
displaying signed and unsigned numbers, and there's one version for displaying characters. The 
interpreter and the compiler take care of selecting the version that is suited best for the purpose. In 
this case, a number is displayed as a number, and a character is displayed as a character. When we 
write 42, the interpreter pushes 42 onto the stack and keeps in mind that this is an unsigned 
number. When we write char *, the interpreter pushes exactly the same value onto the stack, but 
this time it takes a note that the item on top of the stack is a character. This note allows the 
interpreter to select the correct version of .. emit doesn't make this difference. It displays each 
and every parameter as an ASCII character. 

There are several other versions of . in StrongForth's dictionary. Just have a look at these: 

3 4 = . false  ok 
-16 . -16  ok 

In this example, = takes the two items of data type unsigned and returns an item of data type 
flag. A dedicated version of . for flags delivers the appropriate result. The second example 
seems to be straight-forward, but it is not. Remember that 15, 42, 3 and 4 produced items of data 
type unsigned. -16 produces an item of data type signed, and the interpreter finds a version 
of . suited for signed numbers. To enter a positive signed number, you have to precede it with a 
sign, for example +16. The advantage of distinguishing between signed and unsigned numeric 
literals becomes obvious when we try larger numbers: 

4200000000 . 4200000000  ok 
+4200000000 . -94967296  ok 

A standard 32-bit Forth system would always display -94967296, because it can not distinguish 
signed and unsigned numbers. 

With the knowledge obtained so far, let's try out the compiler, still sticking to the examples in Leo 
Brodie's Starting Forth: 
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: star [char] * . ;  ok 
star * ok 
cr 
 ok 
cr star cr star cr star 
* 
* 
* ok 
: stars 0 do star loop ; 
(do) ? undefined word 
unsigned 

Oops. What's that? do tried to compile (do), which expects two numbers of the same data type on 
the stack, but there was only one. Thus, the compiler could not find an appropriate version of (do) 
in the dictionary, and throws an exception. Yes, we have to supply a stack diagram to stars: 

: stars ( unsigned -- ) 0 do star loop ;  ok 
5 stars ***** ok 
stars 
stars ? undefined word 

So, the compiler starts with an unsigned number on the stack, adds another one (0), and now 
(do) gets its input parameters. The last line just shows that stars will itself not be found in the 
dictionary, if the stack is empty. 

Finally, let's complete Leo Brodie's example: 

: margin cr 30 spaces ;  ok 
: blip margin star ;  ok 
: bar margin 5 stars ;  ok 
: f bar blip bar blip blip cr ;  ok 
f 
                              ***** 
                              * 
                              ***** 
                              * 
                              * 
 ok 

Data Types 

In the previous section, we have introduced four data types: unsigned, signed, character, 
and flag. Actually, StrongForth knows a lot more data types, and it is even possible to define 
new, application-specific data types. 

Data Type Structure 

Having several different data types is certainly useful, but a large, unstructured quantity of data 
types would cause more problems than it solves. Since it should be possible to apply words like 
dup and drop to every data type, it would be necessary to supply separate versions of these words 
for each of them. Words with two input parameters, like swap, would have to be defined for each 
possible combination of two data types, which makes already 400 versions for 20 data types! rot 
would be even worse. And StrongForth provides far more than 20 different data types. 

To solve this problem, StrongForth arranges all data types in a hierarchical structure. There are 
three data types at the root of this hierarchy: single, double, and float. All other data types 



Introduction to StrongForth 3.1 4 

are direct or indirect subtypes of these three so-called anchestor data types. Here is an extract of 
StrongForth’s data type structure: 

single  
  integer  
    unsigned  
    signed  
    character  
  address  
    caddress  
    sfaddress  
    dfaddress  
  logical  
    flag  
  token  
  file  
  object  
    stack-diagram  
    input-stream  
      terminal-input-stream  
      string-input-stream  
      file-input-stream  
    output-stream  
      terminal-output-stream  
      string-output-stream  
      file-output-stream  
    control-flow  
      origin  
      destination  
    exception-frame  
    memory-space  
    data-type-attributes  
      class-attributes 
    definition  
      code-definition  
        colon-definition  
      created-definition  
      single-definition  
      double-definition  
      float-definition  
      deferred-definition  
    vocabulary  
double  
  integer-double  
    unsigned-double 
      number-double 
    signed-double  
  data-type  
float 

Whenever the interpreter or the compiler tries to find a word in the dictionary, it accepts not only a 
word whose input parameters match the data types of the items on the stack exactly, but also a 
word whose input parameters are parents, grandparents or any other predecessors of those. Thus, 
only three versions of dup and drop cover all data types: one for single, one for double, and 
one for float. If, for example, the item on top of the stack has data type unsigned, dup for 
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single would match, because unsigned is a grandchild of single. Similarly, swap is 
overloaded nine times in order to deal with all combinations of single, double and float, 
including all direct and indirect subtypes, of both input parameters. rot even needs 27 overloaded 
versions. 27 seems to be quite a lot, but remember that only three of them, ROT, 2ROT and FROT, 
are specified in Forth 2012. Actually, rot is one of very few words in StrongForth having more 
than ten different overloaded versions. 

Do you see the advantage of this concept? In order to swap two items on the stack, you just have to 
write swap, no matter whether those items were single-cell items, double-cell items, floating-point 
numbers or any combination of those. In Forth 2012, you have to write rot for swapping a single-
cell and a double-cell item, or rot rot if you want to swap a double-cell and a single-cell item. 
That’s not intuitive, is it? 

Integers 

Now, let's have a closer look at the data type structure. Some of the data types seem familiar to 
those explicitly specified in Forth 2012: unsigned is u, signed is n and character is char. 
These three data types are children of data type integer, which is itself is a child of single. 
integer is rarely used explicitly, but it is most useful as a common parent to the three data types. 
For example, 

allot ( integer -- ) 

or 

spaces ( integer -- ) 

can be applied to items of data types signed, unsigned and character, without having to 
define separate versions. But note that these two words may not be directly applied to addresses or 
flags, because that makes no sense. You might disagree, claiming that applying allot to a flag 
might be useful in certain applications. However, this would definitely be a programming trick, and 
it would be much clearer code writing 

if -1 allot then 

instead, although it is less efficient. If you want to keep this kind of efficiency in StrongForth, 
you’d have to use a type cast, which reveals the fact that it’s a programming trick: 

cast integer allot 

Addresses 

An address is not the same as an integer, because an address may not be added to another 
address. Two addresses may, however, be subtracted, giving an integer. There are several other 
restrictions regarding address arithmetic, like multiplication, but also some special features that 
only apply to addresses. 

One of many Forth 2012 words returning an address is base: 

decimal base @ . 10  ok 

Okay, that works as expected. But how does @ know that the address on top of the stack is the 
address of an unsigned single-cell number? Obviously, the interpreter choses the correct version of 
. to display an unsigned number. Let's try something else: 

state @ . false  ok 

Same question: How does @ know ... ? The easiest way to get an answer is to get acquainted with 
StrongForth's version of .s: 

45 -3 true char B .s unsigned signed flag character  ok 
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Surprise, surprise! Instead of displaying the data values, .s shows the data types of the items on 
the stack. Well, what else did you expect from a strongly typed system? The information on data 
types is in many cases more useful than the actual numerical values. Now things are getting 
exciting: 

abort \ clean stack 
base .s caddress -> unsigned  ok 

What does that mean? unsigned, flag, character and so on are so-called basic data types. 
caddress -> unsigned is a compound data type, meaning an address pointing to an 
unsigned character-size number. Addresses have to be specific in the sense that addresses to 
different data types have to be distinguishable. caddress, which is a subtype of address, has 
the same meaning as caddr in Forth 2012: Whatever is stored at this address has the size of a 
character instead of the size of a cell. As you’ve seen, that is not necessarily a character. Anything 
that fits into 8 bits, like unsigned numbers between 0 and 255, signed numbers between -128 and 
+127, or flags, can be stored into a character-size memory location. Overloaded versions of @ and 
!, that apply to addresses of data type caddress, have the semantics of C@ and C! as specified 
by Forth 2012. The rest is easy to understand: 

@ .s unsigned  ok 
. 10  ok 

When @ is supplied with an item of data type caddress -> unsigned, the interpreter finds an 
overloaded version which knows that it has to fetch an unsigned character-size number from 
memory and return it as unsigned. Other overloaded versions of @ for data types caddress -
> signed and caddress -> flag even perform proper sign extension. 

Naturally, caddress is mostly used for dealing with character strings in memory. Here’s an 
example of how to use pad, which actually returns the address of a character string buffer: 

char F pad !  ok 
char o pad 1+ !  ok 
char r pad 2 + !  ok 
char t pad 3 + !  ok 
char h pad 4 + !  ok 
pad .s caddress -> character  ok 
5 type Forth ok 

Now, what about variables? A Forth 2012 variable can store anything from a signed number to an 
execution token. In StrongForth, the word variable has to be supplied with information about 
the data type that is supposed to be stored in it. This information can easily be provided by doing a 
small modification to the semantics of variable. In StrongForth, variable initializes the just 
created variable with the value of the item on top of the stack, while simultaneously taking over its 
data type: 

char C variable x  ok 
x .s @ .  address -> character C ok 

An item to be stored into a variable must always have exactly the same data type as the one with 
which the variable had been initialized: 

char D x !  ok 
x @ . D ok 
-13 x ! 
-13 x ! ? undefined word 
signed address -> character 
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The error message means that the interpreter cannot find a word with the name ! that accepts the 
two input parameters signed and data -> character. Note that the second line of an error 
message always displays the data types of the items on the stack at the time the error was detected. 

To show how powerful the concept of compound data types is, let's continue playing with 
variables: 

x variable y  ok 
y .s address -> address -> character  ok 
@ .s address -> character  ok 
@ .s character  ok 
. D ok 

Thus, a compound data type can consist of an arbitrary number of basic data types chained by ->. 
It is therefore possible to store addresses of specific items in variables and generally operate with 
addresses of addresses of addresses and so on. 

Logicals 

An item of data type logical is a collection of individual bits in a single cell. Naturally, such 
items may not be involved in arithmetic operations like +, -, *, / or negate. On the other hand, 
logical operations like and, or, xor and invert may only be applied if the top item on the stack 
is of data type logical: 

hex 12345678 55AA55AA or . 
hex 12345678 55AA55AA or  ? undefined word 
unsigned unsigned 
hex 12345678 55AA55AA cast logical or . 57BE57FA  ok 

cast logical is a so-called type cast, which converts an item of any data type into an item of 
data type logical without affecting its bit pattern. You can cast any data type to any other data 
type: 

decimal  ok 
char X .s character  ok 
cast unsigned .s . unsigned 88  ok 

Performing a logical operation on an integer is not necessarily dangerous, but you have to pay 
attention, because it is almost always a programming trick. StrongForth helps detecting 
programming tricks, because it requires type casts whenever you do something unusual. For 
example, one might decide to multiply a number by a power of 2 using lshift: 

1000 6 lshift . 
1000 6 lshift ? undefined word 
unsigned unsigned 

This does not work, because lshift is a logical operation that expects an item of data type 
logical on the stack: 

1000 cast logical 6 lshift cast unsigned . 64000  ok 

That looks rather awful. The code is certainly more readable with a pure arithmetic operation: 

1000 64 * . 64000  ok 

However, StrongForth’s optimized compiler would actually compile a left shift instead of a 
multiply instruction if the number 64 is already known at compile time. 

Data type flag is a subtype of logical. This ensures that all logical operations can directly be 
applied to flags, i. e., without the ugly type casts. A flag is just a logical with all bits set to the 
same value. The constants true and false both have data type flag: 
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true .s . flag true  ok 
false .s . flag false  ok 

Tokens 

Items of data type token are actually execution tokens, which are abbreviated with xt in Forth 
2012. This data type is a direct subtype of single, in order to prevent any operations other than 
the few allowed ones to be applied to execution tokens. 

Files 

Data type file is used for file handles. It is directly derived from data type single, because this 
excludes arithmetic and logical operations to be applied to file handles. File handles are typically 
created with either open or close. Note that the names of these two words have been shortened 
with respect to Forth 2012. Thanks to the overloading mechanism in StrongForth, it is not 
necessary to give different Forth 2012 words like create and create-file unique names. 
This applies to other words from the File-Access word set as well, because most of them expect an 
input parameter of data type file, which ensures that the correct overloaded version is chosen by 
the interpreter. 

Objects 

StrongForth is object-oriented. One of the data types directly derived from data type single is 
object, which has in turn quite a number of subtypes. In contrast to simple data types like 
integer, address, logical, token and file, each object belongs to a class. Each class 
has a virtual method table, constructors and destructors. It may have class members as well as 
private and protected definitions that are only visible within the context of the definition of the 
class. 

What is called a word in Forth 2012, is in StrongForth an object of class definition. The 
members of a definition are its name, a link to the previous definition, its stack diagram, and other 
attributes. You can obtain its execution token or a pointer to its data space, and compile or execute 
it. An item of data type definition, or one of its subtypes, will be produced by words like ' 
and :noname. Other than in Forth 2012, ' and :noname do not return execution tokens. The 
most important reason is that an execution token cannot directly be executed in StrongForth, 
because it bears no information about the stack diagram of the definition associated with it. 

More information about this subject will be supplied in connection with a detailed explanation of 
execute in the StrongForth Reference manual. For now, the most interesting thing about 
definition is, that StrongForth provides another overloaded version of . for it. No, this is not 
the StrongForth synonym for see, but it displays the name and the complete stack diagram of a 
definition. Here are some examples: 

' here . here ( -- address )  ok 
' name . name ( definition -- caddress -> character unsigned )  ok 
' >body . >body ( definition -- address )  ok 

Input and output streams are objects as well. Instead of Forth 2012’s complicated rules for selecting 
the input source, StrongForth just parses the default input stream, which may be the console, a 
character string, a file, a block or anything else. emit and type display characters on the default 
output stream. Dedicated words for writing to character strings, files and blocks are superfluous. 

Class vocabulary covers Forth 2012 word lists. But a vocabulary can be more than a word list. 
It rather implements a description of how certain names are composed, for example, integer and 
floating-point numbers. You can define a new vocabulary that consults an external file or the 
Internet to find out whether a name is valid and how to compile it. You can define a vocabulary 



Introduction to StrongForth 3.1 9 

that recognizes and compiles octal numbers, fixed-point decimal numbers or arbitrary-length 
numbers. 

Other predefined classes are stack-diagram, control-flow, exception-frame, 
memory-space and data-type-attributes. And of course, you can define your own 
classes and create objects from them. 

Double-cell Data Types 

All members of the double branch of the data type structure occupy two cells in memory. This is 
not new to Forth. The big difference between StrongForth and Forth 2012 regarding double 
numbers is the fact, that Forth 2012 requires special names for those words that deal with double 
numbers, while StrongForth simply overloads the corresponding single number words. To 
duplicate two double numbers, one has to write 2DUP in Forth 2012 and dup in StrongForth. 
Adding two double numbers is done with D+ in Forth 2012 and + in StrongForth, as can be seen in 
this example: 

1000000000000. dup + . 2000000000000  ok 

. is overloaded as well. Overloading makes programming a lot easier. Actually, the complete 
StrongForth Double-Number word set consists of overloaded words. Since interpreter and compiler 
know about the data types of the items on the stack, they will always select the proper words. 

In analogy to single numbers, StrongForth provides the predefined data types integer-double, 
signed-double and unsigned-double. The number 1000000000000. in the above 
example is unsigned-double. When prefixed with a positive or negative sign, it will be 
interpreted as signed-double. 

A new data type is number-double. It is only used between <# and #>, i. e., <# creates an item 
of this data type, while #> consumes it: 

<# ( unsigned-double -- number-double ) 
#> ( number-double – caddress -> character unsigned ) 

This is an easy way to ensure that these two words are always paired. Since # and #s also work 
with items of data type number-double, syntax violations will immediately be detected by the 
compiler. As an example, here is a possible definition of . for signed double numbers: 

: . ( signed-double -- ) 
  dup 0< swap abs <# #s swap sign #> type space ; 

Note that the first four words being compiled are overloaded versions for double-cell numbers, and 
that sign, other than in Forth 2012, requires an item of data type signed-double as its input 
parameter. 

Using a special data type for ensuring the proper syntax is a common technique in StrongForth. 
The subtypes of data type control-flow, which is a class and a subtype of object, are other 
examples. An object of data type origin is created by if and consumed by then. begin 
creates an object of data type destination, which is later consumed by until or repeat. 
else and while may be used in exactly the same way as specified in Forth 2012. origin and 
destination have themselves subtypes, which are not shown in the extract of the data type 
structure at the beginning of this section. Objects of these data types are used between case and 
endcase, and between do/?do and loop/+loop. 

Another subtype of double is data-type. An item of data type data-type is, well, a data 
type. Words using a data type as input or output parameters are extensively used by the interpreter 
and the compiler. For example, specifying a data type within a stack diagram adds it to the stack 
diagram as an input or output parameter. An item of data type data-type is actually composed 
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of an identifier and a set of attributes. Data type attributes include information about whether a data 
type as part of a stack diagram references another data type and whether it is part of a compound 
data type. Data types can be created with dt in the same way as character literals are created with 
char. There’s even an overloaded version of . for items of data type data-type: 

dt signed-double .s . data-type signed-double  ok 

Stack Diagrams 

When experimenting with displaying stack diagrams by using . for definitions, you might have 
found out that ' always finds the most recent definition in the dictionary that matches the given 
name. Since many StrongForth words are overloaded, there often exist multiple occurences of a 
name in the dictionary. This is a major difference to Forth 2012. You can use words for finding all 
overloaded versions of a name: 

words . 
. ( float -- ) 
. ( vocabulary -- ) 
. ( definition -- ) 
. ( data-type -- ) 
. ( character -- ) 
. ( flag -- ) 
. ( signed -- ) 
. ( single -- ) 
. ( signed-double -- ) 
. ( double -- )  ok 

Trying words out with other names, you will almost certainly run into rather strange stack 
diagrams that look like these: 

words dup 
dup ( float -- 1st 1st ) 
dup ( double -- 1st 1st ) 
dup ( single -- 1st 1st )  ok 

Looking again at the data type structure, you'll find out that 1st is not one of the predefined data 
types, neither is 2nd, 3rd and th in the following examples: 

' >number . >number ( integer-double caddress -> character 
unsigned -- 1st 2nd 4 th )  ok 
words accept 
accept ( caddress -> character integer -- 3rd )  ok 

These words obviously have a special meaning. Let's assume we define xdup as follows and try it 
out on an unsigned single number: 

: xdup ( single -- single single ) dup ;  ok 
4 xdup .s single single  ok 
drop drop  ok 

Now we have two items of data type single on the stack instead of two items of data type 
unsigned. Trying, for example, to add those two items will fail, because + is only defined on 
data types integer and address, including subtypes, but not on data type single. That's why 
we have to use 1st in the stack diagram of dup. When interpreting or compiling a word with 1st 
as an output parameter, the data type of this parameter will be replaced with the data type of the 
first actual input parameter: 
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4 dup .s . . unsigned unsigned 4 4  ok 
char j dup .s . . character character jj ok 
base dup .s . .  caddress -> unsigned caddress -> unsigned 4300813 
4300813  ok 

Now it works as expected. As can be seen in the last line of the example, 1st also works correctly 
if the first input parameter has a compound data type. 2nd and 3rd work in a similar way, but 
reference the second or third basic data type in the input parameter list, respectively. To reference 
the fourth, fifth, sixth basic data type and so on, an unsigned number followed by th has to be 
used, as in the stack diagram of >number. This feature is perhaps one of most important keys to 
strong static typing in StrongForth. Many words use 1st, 2nd, 3rd and th in their stack 
diagrams. 

You might have noticed a small but important detail in the explanation of 2nd, 3rd and th. They 
do not reference the second (or third ...) input parameter, but the second (or third ...) basic data 
type in the input parameter list of a stack diagram. The necessity for making this difference 
becomes clear when having a closer look at the stack diagrams of @: 

words @ 
@ ( dfaddress -> float -- 2nd ) 
@ ( sfaddress -> float -- 2nd ) 
@ ( caddress -> flag -- 2nd ) 
@ ( caddress -> signed -- 2nd ) 
@ ( caddress -> single -- 2nd ) 
@ ( address -> float -- 2nd ) 
@ ( address -> double -- 2nd ) 
@ ( address -> single -- 2nd )  ok 

Let's only look at the last line of this list. Although @ has only one input parameter, 2nd references 
single, or, more generally, the tail of the compound data type standing for the first input 
parameter. Thus, when @ is applied to the address of an unsigned single number, the data type of 
the output parameter is really that of an unsigned single number. As has been shown in the previous 
examples with variable x and variable y, it works as expected even if the tail of the 
referenced input parameter is itself a compound data type. 

Another good example is >number, because this word has quite a lot of parameters: 

>number ( integer-double caddress -> character unsigned -- 1st 2nd 
4 th ) 

The first input parameter has the data type integer-double, the second one has the data type 
caddress -> character and the third one has the data type unsigned. Only the second 
input parameter has a compound data type. When the input parameter list is decomposed into basic 
data types, we get: 

1. integer-double 
2. caddress 
3. character 
4. unsigned 

1st references the first basic data type, which is integer-double and nothing else. 2nd 
references caddress. But since the basic data type caddress in this input parameter list is the 
head of a compound data type, 2nd actually references the whole compound data type, namely 
caddress -> character. 3rd would reference the third basic data type, character, 
which is the tail of the second input parameter. Finally, 4 th references unsigned. unsigned 
is both the third input parameter and the fourth basic data type within the input parameter list. 
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Now it should be clear how several other words are defined. Have a look at the common arithmetic 
operators. As a general rule, the data type of the output parameter is the same as that of the first 
input parameter, thus allowing, for example, adding an integer to a character and still having a 
character on the stack afterwards. This should answer the question, why + is not defined as 

+ ( integer integer -- integer ) \ wrong! 

but as 

+ ( integer integer -- 1st ) 

The most common application for data type references is in the output parameter list of stack 
diagrams. But data type references may also be used in the input parameter list, where they have a 
slightly different meaning. Look at the stack diagrams of the various overloaded versions of !: 

words ! 
! ( float dfaddress -> 1st -- ) 
! ( float sfaddress -> 1st -- ) 
! ( single caddress -> 1st -- ) 
! ( float address -> 1st -- ) 
! ( double address -> 1st -- ) 
! ( single address -> 1st -- )  ok  

Don’t bother about what kind of data types dfaddress and sfaddress are. It's only the last 
line we shall investigate. 1st means here, that the second input parameter is an address, which 
points to an item of exactly the same data type as the first input parameter. This is actually a 
restriction to the interpreter or compiler when trying to find a suitable version of ! in the 
dictionary. It prevents you from trying to store something into a memory address that doesn't 
belong there. A simple example should clarify what this means: 

char c variable x  ok 
char d x .s character address -> character  ok 
!  ok 
34 x .s unsigned address -> character  ok 
! 
! ? undefined word 
unsigned address -> character 

The second ! fails to match, because an unsigned single number may not be stored into a character 
variable. 

Data Type Heaps 

To keep track of the data types of the items on the stack, StrongForth has two data type heaps. Why 
two? Because StrongForth needs separate data type heaps for the interpreter and for the compiler. 

The contents of the interpreter's data type heap can be displayed with .s. The items on the data 
type heap are mapped one to one to the items on the stack. If we have three items on the stack, we 
also have three data types on the data type heap, which can be either basic or compound data types. 

The interpreter's data type heap is only used by the interpreter. There is no explicit type checking at 
runtime, because this would cause a tremendous performance penalty. That's the main difference 
between systems with static and dynamic type checking. Instead of doing dynamic type checking at 
runtime, StrongForth's compiler does static type checking at compile time. The compiler has its 
own data type heap, where it keeps the data types of the items that will be on the stack at runtime. 

Since the interpreter is permanently present during compilation, having two separate data type 
heaps is a necessity. Immediate words generally use the interpreter data type heap, because they are 



Introduction to StrongForth 3.1 13 

immediately executed. All other words are compiled, and use the compiler data type heap. Let's 
view an example: 

: test 3 4 .s unsigned unsigned 
+ .s unsigned 
. .s 
;  ok 

.s is an immediate word. In interpretation state, it displays the contents of the interpreter data type 
heap. In compilation state, it displays the contents of the compiler data type heap, as in this 
example. After having compiled two numeric literals, the compiler data type heap contains two 
times the data type unsigned. + is not immediate. The compiler finds a version of + that accepts 
two unsigned single numbers, and compiles it. It also updates the compiler data type heap by 
replacing the data types corresponding to the input parameters of + with the data type that 
corresponds to +'s output parameter, which is unsigned. . is also non-immediate. The compiler 
finds a version suitable for an unsigned single number and removes the data type of its input 
parameter from the compiler data type heap. Since . has no output parameters, the compiler data 
type heap is now left empty. ; is immediate. Before compiling exit, it ensures that the contents of 
the compiler data type heap matches the assumed output parameter list of test. Both are empty, 
so everything is fine. 

Here's a second example: 

: counter ( unsigned -- ) 0 do i . loop ;  ok 
10 counter 0 1 2 3 4 5 6 7 8 9  ok 

By default, a new definition is assumed to have no stack effect. This time, we have specified an 
explicit stack diagram. ) initializes the compiler data type heap with one item of data type 
unsigned, so compilation starts with this item. Compiling 0 adds another unsigned, and do, 
an immediate word, consumes both by compiling (do). i pushes unsigned on the data type 
heap, and . consumes it. loop checks that the contents of the compiler data type heap is the same 
as it was after do was executed, before compiling its own runtime semantics. Finally, ; checks the 
congruence between the compiler data type heap and the output parameter list of counter. 

That's what happens on the compiler data type heap. But what about the interpreter data type heap? 
We can easily watch it with .s by temporarily switching to interpretation state: 

: counter [ .s ] colon-definition 
( unsigned -- ) [ .s ] colon-definition 
0 do [ .s ] colon-definition do-destination 
i . loop [ .s ] colon-definition 
;  ok 

colon-definition, which : pushes onto the interpreter data type heap, is the equivalent of 
what the Forth 2012 standard calls colon-sys. It identifies the current definition. do pushes another 
item onto the data stack and the interpreter data type heap, which is supposed to contain 
information for loop or +loop. do-destination is consumed by loop, and ; consumes 
colon-definition. If we had tried to execute ; before loop, the interpreter would not have 
found it in the dictionary, because ; requires its input parameter colon-definition to be on 
top of the stack. 

The Native-code Compiler 

StrongForth’s compiler creates native machine code instead of lists of tokens for a virtual machine. 
That makes the generated code fast. The code gets even faster, because the compiler adds some 
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sophisticated optimizations. And it becomes really fast because Strongforth does not even need a 
physical data stack. 

A Forth without a data stack? Yes, that really works. StrongForth does not need a memory area 
used as the data stack, and there’s no data stack pointer. All data you expect to be on the data stack 
are stored in the processor’s general-purpose registers. But wait … the underlying 32-bit x86 
architecture has only six 32-bit registers: EAX, EBX, ECX, EDX, ESI and EDI. Doesn’t that mean 
StrongForth’s data stack is only six cells deep? No. The only restriction is that no word is allowed 
to have more than six cells of input parameters and six cells of output parameters. The only Forth 
2012 words that fully use up these six cells are 2ROT and TIME&DATE. Do you consider a word 
expecting more than six cells on the stack or producing more than six cells consider useful? At 
least, it should be possible to factor it out in some way. 

So, where does StrongForth store the data that do not fit into registers? Of course, they ar pushed 
onto the return stack. The fact that these cells are inaccessible during the execution of a word, 
because the return address (nest-sys called in Forth 2012) is also stored on return stack, does not 
matter at all. Once the word currently being executed returns to its caller, the data stored on the 
return stack becomes available again. If the next word to be executed expects these data in certain 
registers, all required cells will be popped from the return stack. 

The assignment between stack cells and registers may vary. As a consequence, words that only 
move or copy data on the stack do in most cases not compile any code at all. The compiler just 
changes the assignments. For example, let’s assume the top cell of the data stack (TOS) is stored in 
register EAX and the next cell (NOS) is stored in register EBX. Now, if swap is being compiled, 
the compiler just reassigns the registers: EAX now contains NOS and EBX contains TOS. No 
machine code needs to be compiled. Here’s an example: 

: -rot ( single single single -- 3rd 1st 2nd ) rot rot ;  ok 
see -rot 
code -rot ( ecx: single edx: single eax: single -- eax: 3rd ecx: 
1st edx: 2nd ) 
00428973: ret, 
endcode ok 

The only machine code instruction compiled is ret,. In the stack diagram, the input and output 
parameters are preceeded by the names of the registers they occupy. It’s easy to see how –rot just 
changes the assignments in order to implement its semantics. 

Let’s view a more complex example: 

: .byte ( single -- ) 
base @ hex swap s>d <# # # #> type base ! ; 
see .byte 
code .byte ( eax: single -- eax: ecx: edx: ebx: changed ) 

0042B49F: ecx 0041D00D byte[] movzx, 
0042B4A6: 0041D00D byte[] 10 mov, 
0042B4AD: edx edx xor, 
0042B4AF: 00422B46 call, <# 
0042B4B4: ecx push, 
0042B4B5: 00422C4B call, # 
0042B4BA: 00422C4B call, # 
0042B4BF: 00422B4E call, #> 
0042B4C4: 00406AAC call, type 
0042B4C9: ecx pop, 
0042B4CA: 0041D00D byte[] cl mov, 
0042B4D0: ret, 
endcode ok 
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.byte types the least significant byte of single in a two-digit hexadecimal format with no 
trailing space. base @ is compiled into only one machine code instruction. Remember that the 
variable base resides in a character-size memory location. swap compiles to nothing, s>d clears 
register edx, so the register pair eax/edx now contains a double-cell number. 
<# # # #> type is compiled into a sequence of four subroutine calls. Register ecx, which 
holds the original value of base, needs to be saved to and restored from the return stack, because 
its contents is destroyed by # and #>. In the stack diagram of .byte, as it is displayed by see, 
you can see which registers are being destroyed by .byte itself. This information is included in 
the attributes of each definition, so that the compiler knows which registers need to be saved before 
it compiles the definition. 

The last example in this section checks whether an item of data type flag assumes only the 
allowed values: 

: ?bounds ( flag -- 1st ) 
dup if dup true <> if -289 throw then then ; 
see ?bounds 
code ?bounds ( ecx: flag -- ecx: 1st eax: changed ) 
0042B4D1: ecx ecx test, 
0042B4D3: 0042B4E4 jz, 
0042B4D5: ecx -01 cmp, 
0042B4D8: 0042B4E4 jz, 
0042B4DA: eax FFFFFEDF mov, 
0042B4DF: 00407B4F call, throw 
0042B4E4: ret, 

endcode ok 

The fact that the compiler knows the stack diagram of each word it compiles and which registers 
are used allows a number of optimizations not possible in other Forth systems. Replacing the data 
stack with the small set of general-purpose registers works fine, unless you need to handle more 
than six cells of input or output parameters. 

When composing the stack diagram of a new word, StrongForth heuristically assigns registers to 
input parameters in such a way that these assignments most likely fit to what other words expect or 
return. Each data type has a default register, which is preferably used. E. g., the default register for 
addresses is ebx, for unsigned number and logicals including flags it is ecx. Double numbers are 
assigned to register pairs eax/edx, ebx/ecx or esi/edi. 

A colon definition usually expects its parameters in specific registers, as can be seen in the above 
examples. However, the input parameters of some frequently used, precompiled words need not be 
in specific registers. Among these words are not only move and copy words like dup, drop and 
swap, but also @, ! and many arithmetical and logical operations. When compiling those words, 
the compiler saves explicit register shuffling in cases where the register assignments otherwise 
would not perfectly fit. Actually, this technique helps a lot in optimizing the generated code. 

-rot as defined above would certainly be another candidate for such a technique. However, 
there’s an even simpler way to accomplish the task: 

: -rot ( -- ) postpone rot postpone rot ; immediate 

This version covers all combinations of input parameters in one word, does not compile a 
subroutine call, and automatically uses all compiler optimizations StrongForth provides. 


